AcWing 207. 球形空间产生器

思路:
设球心坐标为(x1,x2,...,xn),有 ,由此我们可以列出N+1个二次方程,我们可以对前后两个方程做差,来得到N个一次方程,同时可以消掉常数C,第i个方程即
那么我们就可以直接采用高斯消元,解出圆心的坐标。
代码:
#include<bits/stdc++.h>
#include<unordered_map>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
//#define int LL
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
#pragma warning(disable :4996)
const int maxn = 2000100;
const double eps = 1e-8;
const LL MOD = 998244353;
double a[20][20], b[20], c[20][20];//b与c构成增广矩阵
int N;
double A[20][20];
int gauss()
{
int ans = N;//主元个数
for (int i = 1; i <= N; i++)
{
int temp = i;
for (int j = i; j <= N; j++)
{
if (fabs(a[j][i]) > fabs(a[temp][i]))
temp = j;
}
if (fabs(a[temp][i]) < eps)//当前列无主元
{
ans--;
continue;
}
for (int k = 1; k <= N; k++)//第i列系数不为0的行换到第i行
swap(a[i][k], a[temp][k]);
swap(b[i], b[temp]);
double div1 = a[i][i];
for (int j = i; j <= N; j++)
a[i][j] /= div1;
b[i] /= div1;
for (int j = 1; j <= N; j++)
{
if (i != j)
{
double div2 = a[j][i] / 1.0;
for (int k = i; k <= N; k++)
a[j][k] -= a[i][k] * div2;
b[j] -= b[i] * div2;
}
}
}
return ans;
}
void solve()
{
for (int i = 1; i <= N; i++)
{
b[i] = 0;
for (int j = 1; j <= N; j++)
b[i] += A[i][j] * A[i][j] - A[i + 1][j] * A[i + 1][j];
}
for (int i = 1; i <= N; i++)
{
for (int j = 1; j <= N; j++)
a[i][j] = 2.0 * (A[i][j] - A[i + 1][j]);
}
gauss();
for (int i = 1; i <= N; i++)
printf("%.3lf ", b[i]);
putchar('\n');
}
int main()
{
IOS;
scanf("%d", &N);
for (int i = 1; i <= N + 1; i++)
{
for (int j = 1; j <= N; j++)
scanf("%lf", &A[i][j]);
}
solve();
return 0;
}

浙公网安备 33010602011771号