机试题 (用 hash 实现部门管理系统 只记得大概的内容,简洁版) --> 这里改成文件管理系统
1.file node 跟hash node 分开 -- 导致有一些 bug 需要处理, 操作代码也变多, 将在下一篇修改
2.最后的函数直接交换两个结构体对象, 导致 next 指针也改变, 这将导致 next 所在链表发生改变, next 指向的地址不变,但是指针内容已经改变, 所以在有 指向指针的 结构体进行直接交换,会有 BUG
3. 改变 : 在最后的函数
(1)创建一个临时的结构体数组, 然后保存到一个 自己实现 或者 STL 优先队列中
(2)直接保存到一个 STL 优先队列中 (优先队列自动会创建 next 等数据, 只需要实现 compare 函数)
(3)做一个判断, 如果数据没有删除, 保存当前的 索引 (memidx) 到一个 int 数组, 然后对这个数组依次进 优先队列
(4)创建一个堆排结构, 在添加和删除的时候都进行维护, 最后每次取头节点 , 然后更新, 重复 N 次 (返回前 N 级别最高的数据)
#include "common.h"
#define nullptr 0
#define u64 unsigned long long int
#define u32 unsigned int
#define maxstringsize 10
typedef struct LinkNode
{
u64 hash_value;
u32 depth; // 这个 node 所在的深度, 根目录是0
u32 mNum;
u32 create_tm;
bool is_del;
char str[maxstringsize];
LinkNode *father;
LinkNode *sonlist;
LinkNode *next; // 用于 sonlist 中链接各个子 node
}LinkNode;
#define maxmemsize 1007 //散列表大小, 根据题目要求, 一般设置为原数据大小的 2-4 倍 + 7 (一个质数, 这样取模后更加均匀散列)
static LinkNode g_n_mem[maxmemsize];
static int g_n_mem_cnt = 0;
typedef struct HashNode
{
u64 hash_value;
LinkNode *filePtr;
HashNode *next;
}HashNode;
#define maxhashsize 107
static HashNode *m_hashmap[maxhashsize];
static HashNode g_hn_mem[maxmemsize * 2];
static int g_hn_mem_cnt = 0;
static char filename[20][maxstringsize]
{
{"root"},
{"aaaa"},
{"bbbb"},
{"april"},
{"friday"},
{"monday"},
{"love"},
{"kiss"},
{"autum"},
{"weather"},
{"water"},
{"leak"},
{"mouth"},
{"leader"},
{"gohome"},
{"shafa"},
{"season"},
{"global"},
{"see"},
{"sea"},
};
static LinkNode *root = nullptr;
static u32 g_create_tm = 0;
#define m_max_depth 5 // there is 5 level only
u64 my_hash(const char str[]) //因为题目说只有 小写字母,因此做一个 26 进制的进位就可以满足, 如果是小写+数字,则进位改成 26+10, hash 函数可以根据实际需求构造
{
u64 h = 0;
while (*str != '\0')
{
h = h * 26 + (*str++) - 'a' + 1; // 字符串全是小写的情况, 可根据情况改成 31 / 131
}
return h & 0xFFFFFFFFFFFFFFFF;
}
u64 my_hash2(const char str[]) // 这个hash 实现方法,在几个题目上机试了都没有问题,还是挺实用的
{
u64 h = 0;
u64 p = 1;
while (*str != '\0')
{
h += p * (*str++);
p *= 2531011;
}
return h & 0xFFFFFFFFFFFFFFFF;
}
void add_to_hash_list(HashNode **phead, HashNode *pNode) //改变一个指针, 必须要传指针的地址进来
{
pNode->next = *phead;
*phead = pNode;
}
LinkNode *is_exist_in_hash_list(u64 hash_value) // 检查 hash 表是否已经存在对应的节点
{
HashNode *p = m_hashmap[hash_value % maxhashsize];
while (p != nullptr)
{
if (p->hash_value == hash_value)
{
return p->filePtr;
}
p = p->next;
}
return nullptr;
}
HashNode *get_hash_node(u64 hash_value) //获取 hash 节点对应的保存的 指针(文件信息)
{
HashNode *p = m_hashmap[hash_value % maxhashsize];
while (p != nullptr)
{
if (p->hash_value == hash_value)
{
return p;
}
p = p->next;
}
return nullptr;
}
void del_from_hash_list(u64 hash_value) //从 hash 表中移除, 如果给 hash 表增加头节点, 则删除起来代码更简洁
{
HashNode *p = m_hashmap[hash_value % maxhashsize];
if (p->hash_value == hash_value)
{
m_hashmap[hash_value % maxhashsize] = p->next;
}
else
{
HashNode *pre = p;
p = p->next;
while (p != nullptr)
{
if (p->hash_value == hash_value)
{
pre->next = p->next;
break; //must has break
}
pre = p;
p = p->next;
}
}
p->hash_value = 0;
p->filePtr = nullptr;
p->next = nullptr;
}
void add_to_father_son_list(LinkNode *father, LinkNode *pNode) //将文件添加到对应的父节点
{
pNode->next = father->sonlist;
father->sonlist = pNode;
pNode->father = father;
}
void del_from_father_list(LinkNode *pNode)
{
LinkNode *p = pNode->father->sonlist;
if (p == pNode)
{
pNode->father->sonlist = p->next;
}
else
{
LinkNode *pre = p;
p = p->next;
while (p != nullptr)
{
if (p == pNode)
{
pre->next = p->next;
break; //must has break
}
pre = p;
p = p->next;
}
}
}
void init(int mNum)
{
LOGE("mNum = %d", mNum);
g_create_tm = 0;
for (int i = 0; i < maxhashsize; i++)
{
m_hashmap[i] = nullptr;
}
g_n_mem_cnt = 0;
for (int i = 0; i < maxhashsize * 2; i++)
{
g_hn_mem[i].filePtr = nullptr;
g_hn_mem[i].hash_value = 0;
g_hn_mem[i].next = nullptr;
}
g_hn_mem_cnt = 0;
//add root node
u64 hash_value = my_hash(filename[0]);
root = &g_n_mem[g_n_mem_cnt++];
strcpy_s(root->str, filename[0]);
root->hash_value = hash_value;
root->sonlist = nullptr;
root->next = nullptr;
root->father = nullptr;
root->depth = 0;
root->mNum = mNum;
root->create_tm = g_create_tm++;
root->is_del = false;
//add to hash list
HashNode *pNode = &g_hn_mem[g_hn_mem_cnt++];
pNode->hash_value = hash_value;
pNode->filePtr = root;
pNode->next = nullptr;
add_to_hash_list(&m_hashmap[pNode->hash_value % maxhashsize], pNode);
}
void add_file(char upper[], char newFile[], int mNum) // 添加新的文件到已经存在的节点下
{
u64 hash_value = my_hash(upper);
LinkNode * father = is_exist_in_hash_list(hash_value);
if (father == nullptr)
{
LOGE("there is no upper= %s mNum=%d return %s", upper, mNum, newFile);
return;
}
else if (mNum >= father->mNum)
{
LOGE("can not add to upper= %s mNum=%d > %d return %s", upper, mNum, father->mNum, newFile);
return;
}
father->mNum -= mNum;
LOGE("father = %s %s , son = %s", father->str, upper, newFile);
//add node
u64 son_hash_value = my_hash(newFile);
LinkNode *son = &g_n_mem[g_n_mem_cnt++];
strcpy_s(son->str, newFile);
son->hash_value = son_hash_value;
son->sonlist = nullptr;
son->next = nullptr;
son->mNum = mNum;
son->depth = father->depth + 1;
son->create_tm = g_create_tm++;
son->is_del = false;
//add to hash list
HashNode *pNode = &g_hn_mem[g_hn_mem_cnt++];
pNode->hash_value = son_hash_value;
pNode->filePtr = son;
pNode->next = nullptr;
add_to_hash_list(&m_hashmap[pNode->hash_value % maxhashsize], pNode);
//add to father son list
add_to_father_son_list(father, son);
}
void update_depth(LinkNode *father, u32 *max_depth) //更新每个文件所在的 层 (深度) , 并返回当前节点所在链的最大深度 (也可以计算当前节点的子节点的深度)
{
if (father->sonlist == nullptr)
{
if (father->depth > *max_depth)
{
*max_depth = father->depth;
}
return;
}
LinkNode *p = father->sonlist;
while (p != nullptr) {
p->depth = father->depth + 1;
update_depth(p, max_depth);
p = p->next;
}
}
//如果file 已经存在于 upper 下, 直接返回
//假设深度最大是5, 如果并入 upper 后,总的深度超过5,则直接返回
//合并规则: file 的 mNum 并入 upper 节点, file 的子链表变成 upper 的子链表, 同时需要删除 file 节点 ( node 本身 和 hash 表都要更新)
void merge_file(char upper[], char file[])
{
u64 hash_value = my_hash(upper);
LinkNode * father = is_exist_in_hash_list(hash_value);
u64 son_hash_value = my_hash(file);
LinkNode * son = is_exist_in_hash_list(son_hash_value);
if (father == nullptr || son == nullptr)
return;
LOGE("father = %s %s , son = %s %s", father->str, upper, son->str, file);
u32 max_depth = 0;
update_depth(son, &max_depth);
if (father->depth + max_depth - son->depth > m_max_depth)
{
LOGE("depth is beyond limit, return depth: %s(%d) %s(%d) max_depth(%d)",
father->str, father->depth, son->str, son->depth, max_depth);
return;
}
LOGE("max_depth of %s = %d", son->str, max_depth);
//add to father son list
LinkNode *p = son->sonlist;
while (p != nullptr) {
// 这里有 BUG, 因为添加到父节点的子链表会导致 next指向改变, 再指行 p=p->next 会错误
LinkNode *q = p;
p = p->next;
add_to_father_son_list(father, q);
}
//remove from hash list
del_from_hash_list(son->hash_value);
//remove from son list (这里要注意, son 的father 不是当前的 father)
del_from_father_list(son);
max_depth = 0;
update_depth(father, &max_depth);
//remove node
son->sonlist = nullptr;
son->father = nullptr;
son->next = nullptr;
son->hash_value = 0;
son->mNum = 0;
son->depth = 0;
son->is_del = true;
}
//给排名前 depthNum 的文件增加 mNum 个文件 (除了 root 之外)
//排名规则: 人数最少,优先级最高, 如果人数一样,创建时间越晚,优先级越高
//这里有一个问题, 当直接对 g_n_mem 数组进行冒泡排序, 将会改下对于数组里面的内容
//但由于这个数组对应的 hash 节点里的 *filePtr 还是指向之前的内存, 因此需要同步改 hash 对应的 *filePtr
void recuit(u32 depthNum, u32 mNum)
{
LOGE("depthNum = %d mNum = %d", depthNum, mNum);
int count = 0;
for (int i = 1; i < g_n_mem_cnt - 1; i++)
{
if (g_n_mem[i].is_del == false)
{
count++;
for (int j = i + 1; j < g_n_mem_cnt; j++)
{
if (g_n_mem[j].is_del == false
&& (g_n_mem[i].mNum > g_n_mem[j].mNum
|| (g_n_mem[i].mNum > g_n_mem[j].mNum && g_n_mem[i].create_tm < g_n_mem[j].create_tm)))
{
//因为 hashnode 保存的指针 filePtr 指向 g_n_mem[i], 而内存里面的数据发生交换,需要同步修改 hash list
HashNode *pi = get_hash_node(g_n_mem[i].hash_value);
HashNode *pj = get_hash_node(g_n_mem[j].hash_value);
pi->filePtr = &g_n_mem[j];
pj->filePtr = &g_n_mem[i];
LinkNode tmp = g_n_mem[i];
g_n_mem[i] = g_n_mem[j];
g_n_mem[j] = tmp;
}
}
}
if (count >= depthNum)
{
break;
}
}
count = 0;
for (int i = 1; i < g_n_mem_cnt - 1; i++)
{
if (g_n_mem[i].is_del == false)
{
g_n_mem[i].mNum += mNum;
count++;
}
if (count >= depthNum)
{
break;
}
}
}
//root->1->3(april)->5(monday)->6(love)->7(kiss)
//root->1->4(friday)
//root->2(bbb)->8(autum)->9(weather)->10(water)
extern void test_hash()
{
init(100);
add_file(filename[0], filename[1], 50);
add_file(filename[0], filename[2], 40);
add_file(filename[1], filename[3], 10);
add_file(filename[1], filename[4], 15);
add_file(filename[3], filename[5], 5);
add_file(filename[5], filename[6], 3);
add_file(filename[6], filename[7], 2);
add_file(filename[2], filename[8], 7);
//add fail
add_file(filename[8], filename[9], 9); //父只有7个,添加失败
add_file(filename[9], filename[10], 4); //没有父节点,添加失败
add_file(filename[8], filename[9], 6); //父有7个
add_file(filename[9], filename[10], 4); // okay
add_file(filename[9], filename[11], 1); // okay
//recuit(3, 10);
merge_file(filename[6], filename[8]);
merge_file(filename[6], filename[9]);
//检查 hash 链表 filePtr 是否已经被修改
for (int i = 0; i < g_n_mem_cnt; i++)
{
u64 hash_value = my_hash(filename[i]);
LinkNode * pNode = is_exist_in_hash_list(hash_value);
if (pNode != nullptr)
LOGE("filename[%d] = %s, node str = %s", i, filename[i], pNode->str);
}
}
e:\c++\c_test\c_test\hash.cpp init 181 : mNum = 100 e:\c++\c_test\c_test\hash.cpp add_file 236 : father = root root , son = aaaa e:\c++\c_test\c_test\hash.cpp add_file 236 : father = root root , son = bbbb e:\c++\c_test\c_test\hash.cpp add_file 236 : father = aaaa aaaa , son = april e:\c++\c_test\c_test\hash.cpp add_file 236 : father = aaaa aaaa , son = friday e:\c++\c_test\c_test\hash.cpp add_file 236 : father = april april , son = monday e:\c++\c_test\c_test\hash.cpp add_file 236 : father = monday monday , son = love e:\c++\c_test\c_test\hash.cpp add_file 236 : father = love love , son = kiss e:\c++\c_test\c_test\hash.cpp add_file 236 : father = bbbb bbbb , son = autum e:\c++\c_test\c_test\hash.cpp add_file 230 : can not add to upper= autum mNum=9 > 7 return weather e:\c++\c_test\c_test\hash.cpp add_file 225 : there is no upper= weather mNum=4 return water e:\c++\c_test\c_test\hash.cpp add_file 236 : father = autum autum , son = weather e:\c++\c_test\c_test\hash.cpp add_file 236 : father = weather weather , son = water e:\c++\c_test\c_test\hash.cpp add_file 236 : father = weather weather , son = leak e:\c++\c_test\c_test\hash.cpp merge_file 294 : father = love love , son = autum autum e:\c++\c_test\c_test\hash.cpp merge_file 301 : depth is beyond limit, return depth: love(4) autum(2) max_depth(4) e:\c++\c_test\c_test\hash.cpp merge_file 294 : father = love love , son = weather weather e:\c++\c_test\c_test\hash.cpp merge_file 304 : max_depth of weather = 4 e:\c++\c_test\c_test\hash.cpp test_hash 423 : filename[0] = root, node str = root e:\c++\c_test\c_test\hash.cpp test_hash 423 : filename[1] = aaaa, node str = aaaa e:\c++\c_test\c_test\hash.cpp test_hash 423 : filename[2] = bbbb, node str = bbbb e:\c++\c_test\c_test\hash.cpp test_hash 423 : filename[3] = april, node str = april e:\c++\c_test\c_test\hash.cpp test_hash 423 : filename[4] = friday, node str = friday e:\c++\c_test\c_test\hash.cpp test_hash 423 : filename[5] = monday, node str = monday e:\c++\c_test\c_test\hash.cpp test_hash 423 : filename[6] = love, node str = love e:\c++\c_test\c_test\hash.cpp test_hash 423 : filename[7] = kiss, node str = kiss e:\c++\c_test\c_test\hash.cpp test_hash 423 : filename[8] = autum, node str = autum e:\c++\c_test\c_test\hash.cpp test_hash 423 : filename[10] = water, node str = water e:\c++\c_test\c_test\hash.cpp test_hash 423 : filename[11] = leak, node str = leak e:\c++\c_test\c_test\c_test.cpp main 37 : process_time = 8.000000
浙公网安备 33010602011771号