洛谷P8508 做不完的作业【题解】

事先声明

此题解为一篇洛谷题解的详细补充这里(我才不告诉你我这道题想了好久)

题目大意

\(n\) 个任务,记作 \(t\) 数组,由于主人公很懒,所以他每天都要睡觉,每一天都有 \(x\) 小时。
\(i\) 天睡觉的下限为 \(r \cdot x \cdot i\) ,其中 \(r\) 为给定实数。
求至少需要多少天才能完成任务。

分析(你以为你打的是暴力,其实是正解

考虑一种暴力做法,即模拟。
每天考虑不同的任务,能做就做,不能做则睡觉。(算贪心吗?

question1: \(t\) 数组要排序嘛?

  • 面对这个问题,我们从一般角度来看都是解不出来的,所以我们考虑转换思路

  • 我们从全局考虑这个问题

  • 因为 \(\sum_{i=1}^{n} t_i\) 是恒定的,所以每一天都是独立的,也就是两天之间没有联系。

  • 又因为 \(\sum_{i=1}r\cdot x \cdot i\) 也是恒定的。

  • 所以总时间=睡觉的时间+工作的时间是恒定的。

  • 所以 \(t\) 数组的顺序没有强制要求。

然后代码就出来了。
可以发现会被卡掉(别问为什么),所以考虑优化。

优化?

容易发现,如果每天都可以做任务的话,时间复杂度就为 \(O(n)\) 远远够得,所以不可能会被卡
发现了什么?
有些天他整天睡觉的
而这些天都算进了我们的循环,太浪费了,我们考虑把这些天过滤掉,这样时间复杂度就为线性了!
假设当前面对的是 \(tot\) 个任务,即 \(t_{tot}\) ,目前总睡觉时间为 \(sl\) ,现在是第 \(j\) 天。
那么当 \(x-a_{tot}+sl<m \cdot j \cdot \frac{p}{q}\) ,这一天肯定做不了任务了,所以我们让他睡觉。
假设要睡 \(i\) 天觉 那么有 \(m - a_{tot} + sl + i \cdot m \ge m \cdot(i+j) \cdot \frac{p}{q}\)
简单移项可以得到 \(i \ge \cfrac{j \cdot m \cdot p - q \cdot (m - a_{tot})+sl}{m\cdot(q-p)}\)
取等号最小,所以 \(i =\left \lceil \cfrac{j \cdot m \cdot p - q \cdot (m - a_{tot})+sl}{m\cdot(q-p)} \right \rceil\) ,其中 \(\left \lceil \right \rceil\) ,为向上取整。

question2:向上取整怎么计算

  • 虽然c++有向上取整的函数,但是假设我们不知道,但是我们知道, \(int\) 会自动向下取整,那么,有什么方式可以让向上取整和向下取整相互转换吗?

  • 答案是有的,有个公式: \(\left \lceil \cfrac{x}{y} \right \rceil = \left \lfloor \cfrac{x+y-1}{y} \right \rfloor\)

  • 怎么证明呢?

  • 我们分类讨论。

  1. 我们设 \(y | x\) ,则我们可以设 \(x=ky(k \in \mathbb{Z})\) ,则我们只需证 \(\left \lceil k \right \rceil = \left \lfloor k+1-1 \right \rfloor\) ,明显成立。
  2. 我们设 \(x=ky+p(k,p \in \mathbb{Z})\)\(p \in (1,y-1]\) , 则我们只需证 \(\left \lceil k+\cfrac{p}{y} \right \rceil = \left \lfloor k+1+\cfrac{p}{y}-\cfrac{1}{y} \right \rfloor\) ,又因为 \(p<y\) ,则原式 \(k+1=k+1\) ,显然成立。
    于是,这道题就做完了,这里配上代码

Code

#include<bits/stdc++.h>

using namespace std;

#define int long long 

const int MAXN = 1e5 + 7;

int n, x, p, q, t[MAXN];

signed main() {
	ios::sync_with_stdio(false);
	cin.tie(NULL);//cin的加速 
	
	cin >> n >> x >> p >> q;
	for (int i = 1; i <= n; i ++) cin >> t[i];
	
	int tot = 1, sl = 0;
	for (int j = 1; ; j ++) {
		if ((x - t[tot] + sl) * q < x * p * j) {//需要睡觉 
			int i = (x * p * j - (x - t[tot] + sl) * q + (x * (q - p)) - 1) / (x * (q - p));//我们推出来的式子 
			j += i, sl += i * x;//加上去 
		}
		int ans = x;//ans:睡觉时间,一开始全天都要睡觉 
		while (true) {
			if (tot > n) break;//做完了 
			if (ans <= t[tot]) break;//不够做 
			if ((ans - t[tot] + sl) * q < x * p * j) break;//不够做 
			ans -= t[tot], tot++;//睡觉时间减掉,tot++ 
		} 
		sl += ans;//睡觉时间加上ans 
		if (tot > n) {
			cout << j << endl;//输出 
			break;
		}
	} 
	return chen_zhe;
}

完结撒花✿✿ヽ(°▽°)ノ✿

posted @ 2023-01-13 22:15  Phrvth  阅读(83)  评论(0)    收藏  举报