No.1897 Sum of 2nd Max
No.1897 Sum of 2nd Max
题意:
现在你可以从数字\([1,k]\)中选数(可以重复选),形成一个长度为\(n\)的序列,问所有序列中第二大的数总和为多少
思路:
\(f(i)\)定义为序列中有第\(2\)大值大于等于\(i\)的数的序列总数,\(g(i)\)定义为第二大值恰好为\(i\)的序列总数,所以\(g(i)=f(i)-f(i+1)\),最终答案就是\(sum(i×g(i))\)
\(f(i)=k^n-(k-i+1)×n×(i-1)^(n-1)-(i-1)^n\)
就是用序列总数减去只有一个大于等于\(i\)的序列总数和所有数都小于\(i\)的序列总数
点View Code
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 4e5 + 10;
const int mod = 998244353;
int n, k;
int f[N];
int qmi(int a, int k) {
int res = 1;
a = a % mod;
while (k) {
if (k & 1) res = res * a % mod;
k >>= 1;
a = a * a % mod;
}
return res;
}
signed main() {
cin >> n >> k;
int res = 0;
for (int i = k; i >= 1; i--) {
f[i] = qmi(k, n);
int a = (k - i + 1) * n % mod * qmi(i - 1, n - 1) % mod;
int b = qmi(i - 1, n) % mod;
f[i] = (f[i] - a + mod - b + mod) % mod;
res = res + ((f[i] - f[i + 1] + mod) * i) % mod;
res %= mod;
}
cout << res << endl;
}

浙公网安备 33010602011771号