1 # vec <- rep( seq(1,5,by=0.5),3)
2
3 # vec <- seq( 1 , 10 , by = 1 )
4 # min(vec) #最小值
5 # max(vec) #最大值
6 # range(vec) #范围
7 # length(vec) #长度
8 # sum(vec) #总和
9 # prod(vec) #向量元素所有的乘积
10 # median(vec) #中位数
11 # mean(vec) #均值
12 # var(vec) #样本方差
13 # sort(vec) #排序
14 # order(-vec) #排序 的是 索引并不改变向量的实际位置
15 # vec
16
17 # vec <- 1:5
18 # Logic_vec <- vec > 3
19 # Logic_vec
20
21 # str = c( "x" , "y" , "z" , "w" )
22 # paste("result.",str,sep="")
23
24 # x <- -5 : 5
25 # y <- numeric( length(x) )
26 # y[x<0] <- 1 - x[x<0]
27 # y[x>=0] <- 1 + x[x>=0]
28 # x;y
29
30 # sex <- c("M","F","M","M","F");sex
31
32 # sexf <- factor(sex) ; sexf
33
34 # sex.level <- levels(sexf) ; sex.level
35
36 # sex.tab <- table( sexf ) ; sex.tab
37
38 # sex <- c("M","F","M","M","F")
39 # sexf <- factor(sex);
40 # sex.level <- levels(sexf);
41 # height <- c(174,165,180,171,160)
42 # tapply( height , sex , mean )
43
44
45 # A <- matrix( 1:9 , nrow = 3 , ncol = 3 , byrow = TRUE ) ;
46 # A[3,3] = 10;A;
47 # B <- matrix( 1 , nrow = 3 , ncol = 1 , byrow = TRUE ) ; B
48
49 # A <- matrix( 1:9 , nrow = 3 , ncol = 3 , byrow = TRUE ) ;
50 # A[3,3] = 10;
51 # det(A)
52
53 # A <- t( array( c(1:8,10) , dim=c(3,3) ) );A
54 # Inv_A <- solve(A) ; Inv_A
55
56 # A <- t( array( c(1:8,10) , dim=c(3,3) ) );A
57 # Inv_A <- solve(A) ; Inv_A
58 # E = A %*% Inv_A ; E
59
60 # A <- t( array( c(1:8,10) , dim = c(3,3) ) );A
61 # b <- c( 1 , 1 , 1 );b
62 # x <- solve( A,b ) ; x
63
64 # A <- t( array( c(1:8,10) , dim = c(3,3) ) );A
65 # Sm <- tcrossprod (A,A); Sm
66
67
68 # ev <- eigen(Sm) ; ev
69
70 # A <- t( array( c(1:8,10) , dim = c(3,3) ) );A
71 # svdA <- svd(A) ; svdA
72 # u = svdA$u;u
73 # v = svdA$v;v
74 # d = svdA$d;d
75 # u %*% diag(d) %*% t(v)
76
77 # A <- t( array( c(1:8,10) , dim = c(3,3) ) );A
78 # apply( A , 2 , sum )
79
80
81 # fzero <- function( f , a , b , eps = 1e-5 ){
82 # if( f(a) * f(b) > 0 )
83 # list( fail = "Unfound ")
84 # else{
85 # repeat{
86 # if( abs(b-a) < eps ) break
87 # x <- (a+b) / 2
88 # if( f(a) * f(x) < 0 ){
89 # b <- x
90 # }
91 # else{
92 # a <- x
93 # }
94 # }
95 # list(root = (a+b)/2,fun = f(x) )
96 # }
97 # }
98 #
99 # f <- function( x ) { x^3 - x - 1 }
100 # fzero(f,0,10,1e-6)
101
102 # area <- function( f , a , b , eps = 1e-6 , lim = 10 ){
103 # fun1 <- function( f , a , b , fa , fb , a0 , eps , lim , fun ){
104 # d <- ( a+b ) / 2 ;
105 # h <- ( b-a ) / 4 ;
106 # fd <- f(d) ;
107 # a1 <- h * ( fa+fd )
108 # a2 <- h * ( fd+fb )
109 # if( abs(a0-a1-a2) < eps || lim == 0 ){
110 # return ( a1 + a2 )
111 # }else{
112 # return ( fun(f,a,d,fa,fd,a1,eps,lim-1,fun)
113 # +fun(f,d,b,fd,fb,a2,eps,lim-1,fun))
114 # }
115 # }
116 # fa <- f(a);
117 # fb <- f(b);
118 # a0 <- ((fa+fb) * (b-a))/2;
119 # fun1(f,a,b,fa,fb,a0,eps,lim,fun1)
120 # }
121 #
122 # f <- function(x) x
123 # quad <- area(f,0,10) ; quad