NTT 学习笔记
引入
\(\tt NTT\) 和 \(\tt FFT\) 有什么不一样呢?
就是 \(\tt NTT\) 是可以用来取模的,而且没有复数带来的精度误差。
最最重要的是据说 \(\tt NTT\) 常数小的很,可以在这一方面吊打 \(\tt FFT\) 。
至于对于不用取模的多项式乘法怎么做,可以给他附一个非常大的模数。
但是如果遇到有非整数的系数的多项式还是只能看 \(\tt FFT\) 了。
正文
\(\tt NTT\) 的前置知识比 \(\tt FFT\) 的要简单的多。
原根
对于 \(p\) 和 \(g\) 两个整数,若
\[g^i\ \text{mod} \ g\ (1\leq i\leq p -1)
\]
这个式子的值都不相同,那么 \(g\) 是 \(p\) 的原根。
通常 \(\tt NTT\) 的题目会给 \(998244353\) , \(1004535809\) , \(469762049\) 这几个模数。
他们的原根都是 \(3\) 。
但是这个我嫌不够过瘾,所以就放一个在网上找到的牛逼原根表。
//(g 是mod(r*2^k+1)的原根)
素数 r k g
3 1 1 2
5 1 2 2
17 1 4 3
97 3 5 5
193 3 6 5
257 1 8 3
7681 15 9 17
12289 3 12 11
40961 5 13 3
65537 1 16 3
786433 3 18 10
5767169 11 19 3
7340033 7 20 3
23068673 11 21 3
104857601 25 22 3
167772161 5 25 3
469762049 7 26 3
1004535809 479 21 3
2013265921 15 27 31
2281701377 17 27 3
3221225473 3 30 5
75161927681 35 31 3
77309411329 9 33 7
206158430209 3 36 22
2061584302081 15 37 7
2748779069441 5 39 3
6597069766657 3 41 5
39582418599937 9 42 5
79164837199873 9 43 5
263882790666241 15 44 7
1231453023109121 35 45 3
1337006139375617 19 46 3
3799912185593857 27 47 5
4222124650659841 15 48 19
7881299347898369 7 50 6
31525197391593473 7 52 3
180143985094819841 5 55 6
1945555039024054273 27 56 5
4179340454199820289 29 57 3
转载 这篇博客的 。
\(\tt NTT\)
其实 \(\tt NTT\) 就是把原根替换 \(\tt FFT\) 中的单位根。
\(\tt FTT\) 之所以牛逼,是因为 \(\omega\) 有一些非常奇妙的性质。
然后神仙们发现其实原根也有非常牛逼的性质。
当此时的合并区间的长度为 \(L=2\times l\) 时
单位根是
\[\cos\frac{2\pi}{L}+i\times\sin\frac{2\pi}{L}=\cos\frac{\pi}{l}+i\times\sin\frac{\pi}{l}
\]
而原根是:
\[g^{\frac{p-1}{L}}=g^{\frac{p-1}{2\times l}}
\]
其他和 \(\tt FFT\) 就基本没有什么区别了。
inline void NTT(int a[], int len, int inv) {
int bit = 0;
while ((1 << bit) < len) ++bit;
for (int i = 0; i <= len - 1; i++) {
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
if (i < rev[i]) std::swap(a[i], a[rev[i]]);
}
for (int mid = 1; mid < len; mid *= 2) {
int tmp = power(g, (mod - 1) / (mid * 2));
if (inv == -1) tmp = power(tmp, mod - 2);
for (int i = 0; i < len; i += mid * 2) {
int omega = 1;
for (ll j = 0; j < mid; ++j, omega = omega * tmp % mod) {
int x = a[i + j];
int y = omega * a[i + j + mid] % mod;
a[i + j] = (x + y) % mod;
a[i + j + mid] = (x - y + mod) % mod;
}
}
}
}
这个代码也不是我原创的,在网上随便贺了一篇代码。
调用的话就和 \(\tt FFT\) 基本上一模一样。

浙公网安备 33010602011771号