info: { blogIcon: 'https://cdn.luogu.com.cn/upload/usericon/765493.png', blogUser: 'OIerBoy', blogAvatar: 'https://cdn.luogu.com.cn/upload/usericon/765493.png', blogStartDate: '2023-04-22', webpageTitleOnblur: '(o?v?)ノ Hi', webpageTitleOnblurTimeOut: 1000, webpageTitleFocus: '(*′?`*) 欢迎回来!', webpageTitleFocusTimeOut: 1000, webpageIcon: "https://cdn.jsdelivr.net/gh/BNDong/Cnblogs-Theme-SimpleMemory@master/img/webp/blog_logo.webp", { enable: true, // 是否开启日/夜间模式切换按钮 auto: { // 自动切换相关配置 enable: false, // 开启自动切换 dayHour: 5, // 日间模式开始时间,整数型,24小时制 nightHour: 19 // 夜间模式开始时间,整数型,24小时制 } } },

P1648 看守

2023-09-21

题目

P1648 看守

难度&重要性(1~10):8.5

题目来源

luogu

题目算法

状压 dp,数学

解题思路

这道题我们首先要考虑如何去优化曼哈顿距离。(不然它怎么不玩欧式距离)
首先这是一个普通的曼哈顿距离:\(\sum\limits_{i=1}^d|A_i-B_i|\)
敲重点了,我们可以将 \(|A_i-B_i|\) 化为 \(\max\{A_i-B_i,B_i-A_i\}\)
\(\sum\limits_{i=1}^d\max\{A_i-B_i,B_i-A_i\}\)
这样做有什么好处呢?
因为 \(\max\) 是满足分配律的:
\(\max\{a,b\}+\max\{c,d\}=\max\{a+b,a+c,b+c,b+d\}\)
这样曼哈顿距离就表示为:\(\max\limits_{k\in\{1,-1\}}\{\sum\limits_{i=1}^dk\times A_i-\sum\limits_{i=1}^dk\times B_i\}\)
这样我们就只需要得到 \(\max\limits_{i=1,k\in\{1,-1\}}^n\{\sum\limits_{j=1}^dk\times a_{i,j}\}\)\(\min\limits_{i=1,k\in\{1,-1\}}^n\{\sum\limits_{j=1}^dk\times a_{i,j}\}\)
只需要一减就是答案了。

完成状态

已完成

posted @ 2023-09-21 22:49  OIerBoy  阅读(14)  评论(0)    收藏  举报