flink 的安装以及fink-cdc 基于多数据源导入的es 的简单使用
此文档是参照flink-cdc 文档( https://ververica.github.io/flink-cdc-connectors/master/content/快速上手/mysql-postgres-tutorial-zh.html) 案例

的最佳实践
1.下载flink release 最新版本1.18.0 并解压,

https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-elasticsearch7/3.0.1-1.17/flink-sql-connector-elasticsearch7-3.0.1-1.17.jar 下载es flink-cdc 驱动包

git clone github上面 flink-cdc master 分支并编译

mvn clean install -DskipTests 执行命令进行编译会生成jar 包如下


复制jar 包到flink lib 目录

启动flink 主程序 bin/start-cluster.sh


访问 http://localhost:8081/#/job-manager/logs flink webui 界面
0

需要注意的一点是 确保加入jar包到lib 或者修改配置时,确保stop-cluster 停止成功, 之前碰到执行了stop-cluster.sh web ui 8080 还能访问的情况
按照文档编写docker-compose 文件
version: '2.1'
services:
postgres:
image: debezium/example-postgres:1.1
ports:
- "5432:5432"
environment:
- POSTGRES_DB=postgres
- POSTGRES_USER=postgres
- POSTGRES_PASSWORD=postgres
mysql:
image: debezium/example-mysql:1.1
ports:
- "3306:3306"
environment:
- MYSQL_ROOT_PASSWORD=123456
- MYSQL_USER=mysqluser
- MYSQL_PASSWORD=mysqlpw
elasticsearch:
image: elastic/elasticsearch:7.6.0
environment:
- cluster.name=docker-cluster
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
- discovery.type=single-node
ports:
- "9200:9200"
- "9300:9300"
ulimits:
memlock:
soft: -1
hard: -1
nofile:
soft: 65536
hard: 65536
kibana:
image: elastic/kibana:7.6.0
ports:
- "5601:5601"
启动 docker 容器
docker-compose up -d
查看启动情况

说明启动成功
准备mysql 数据
进入MySQL 容器
docker-compose exec mysql mysql -uroot -p123456

-
创建数据库和表
products,orders,并插入数据(参照原文档案例)-- MySQL CREATE DATABASE mydb; USE mydb; CREATE TABLE products ( id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(255) NOT NULL, description VARCHAR(512) ); ALTER TABLE products AUTO_INCREMENT = 101; INSERT INTO products VALUES (default,"scooter","Small 2-wheel scooter"), (default,"car battery","12V car battery"), (default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"), (default,"hammer","12oz carpenter's hammer"), (default,"hammer","14oz carpenter's hammer"), (default,"hammer","16oz carpenter's hammer"), (default,"rocks","box of assorted rocks"), (default,"jacket","water resistent black wind breaker"), (default,"spare tire","24 inch spare tire"); CREATE TABLE orders ( order_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY, order_date DATETIME NOT NULL, customer_name VARCHAR(255) NOT NULL, price DECIMAL(10, 5) NOT NULL, product_id INTEGER NOT NULL, order_status BOOLEAN NOT NULL -- Whether order has been placed ) AUTO_INCREMENT = 10001; INSERT INTO orders VALUES (default, '2020-07-30 10:08:22', 'Jark', 50.50, 102, false), (default, '2020-07-30 10:11:09', 'Sally', 15.00, 105, false), (default, '2020-07-30 12:00:30', 'Edward', 25.25, 106, false);在 Postgres 数据库中准备数据
-
进入 Postgres 容器
docker-compose exec postgres psql -h localhost -U postgres![]()
-
创建表
shipments,并插入数据-- PG CREATE TABLE shipments ( shipment_id SERIAL NOT NULL PRIMARY KEY, order_id SERIAL NOT NULL, origin VARCHAR(255) NOT NULL, destination VARCHAR(255) NOT NULL, is_arrived BOOLEAN NOT NULL ); ALTER SEQUENCE public.shipments_shipment_id_seq RESTART WITH 1001; ALTER TABLE public.shipments REPLICA IDENTITY FULL; INSERT INTO shipments VALUES (default,10001,'Beijing','Shanghai',false), (default,10002,'Hangzhou','Shanghai',false), (default,10003,'Shanghai','Hangzhou',false);
-
cd 到flink 主目录![]()
启动flink-sql-client
![]()
![]()
在 Flink SQL CLI 中使用 Flink DDL 创建表
首先,开启 checkpoint,每隔3秒做一次 checkpoint
-- Flink SQL Flink SQL> SET execution.checkpointing.interval = 3s;然后, 对于数据库中的表
products,orders,shipments, 使用 Flink SQL CLI 创建对应的表,用于同步这些底层数据库表的数据-- Flink SQL Flink SQL> CREATE TABLE products ( id INT, name STRING, description STRING, PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'mysql-cdc', 'hostname' = 'localhost', 'port' = '3306', 'username' = 'root', 'password' = '123456', 'database-name' = 'mydb', 'table-name' = 'products' ); Flink SQL> CREATE TABLE orders ( order_id INT, order_date TIMESTAMP(0), customer_name STRING, price DECIMAL(10, 5), product_id INT, order_status BOOLEAN, PRIMARY KEY (order_id) NOT ENFORCED ) WITH ( 'connector' = 'mysql-cdc', 'hostname' = 'localhost', 'port' = '3306', 'username' = 'root', 'password' = '123456', 'database-name' = 'mydb', 'table-name' = 'orders' ); Flink SQL> CREATE TABLE shipments ( shipment_id INT, order_id INT, origin STRING, destination STRING, is_arrived BOOLEAN, PRIMARY KEY (shipment_id) NOT ENFORCED ) WITH ( 'connector' = 'postgres-cdc', 'hostname' = 'localhost', 'port' = '5432', 'username' = 'postgres', 'password' = 'postgres', 'database-name' = 'postgres', 'schema-name' = 'public', 'table-name' = 'shipments', 'slot.name' = 'flink' );最后,创建
enriched_orders表, 用来将关联后的订单数据写入 Elasticsearch 中-- Flink SQL Flink SQL> CREATE TABLE enriched_orders ( order_id INT, order_date TIMESTAMP(0), customer_name STRING, price DECIMAL(10, 5), product_id INT, order_status BOOLEAN, product_name STRING, product_description STRING, shipment_id INT, origin STRING, destination STRING, is_arrived BOOLEAN, PRIMARY KEY (order_id) NOT ENFORCED ) WITH ( 'connector' = 'elasticsearch-7', 'hosts' = 'http://localhost:9200', 'index' = 'enriched_orders' );关联订单数据并且将其写入 Elasticsearch 中
使用 Flink SQL 将订单表
order与 商品表products,物流信息表shipments关联,并将关联后的订单信息写入 Elasticsearch 中-- Flink SQL Flink SQL> INSERT INTO enriched_orders SELECT o.*, p.name, p.description, s.shipment_id, s.origin, s.destination, s.is_arrived FROM orders AS o LEFT JOIN products AS p ON o.product_id = p.id LEFT JOIN shipments AS s ON o.order_id = s.order_id;
这里执行INSERT INTO enriched_orders SELECT o.*, p.name, p.description, s.shipment_id, s.origin, s.destination, s.is_arrived FROM orders AS o LEFT JOIN products AS p ON o.product_id = p.id LEFT JOIN shipments AS s ON o.order_id = s.order_id; 时碰到的问题,![]()
任务提交成功, web ui 查询报错信息, 一直报时区不正确, 进入到mysql SET GLOBAL time_zone ='Asia/Shanghai';设置时区![]()
再次执行 上面insert sql 报什么资源不可用
https://www.cnblogs.com/javasl/p/16861356.html
![]()
重启flink bin/start-cluster.sh
启动 bin/sql-client.sh
再次执行
INSERT INTO enriched_orders SELECT o.*, p.name, p.description, s.shipment_id, s.origin, s.destination, s.is_arrived FROM orders AS o LEFT JOIN products AS p ON o.product_id = p.id LEFT JOIN shipments AS s ON o.order_id = s.order_id;
![]()
再次看web ui 界面 没有报错信息了,说明job run 成功 此job 会处于一直run 状态
![]()
![]()
在mysql 和 psql 客户端 分别执行sql 看到数据同时同步到了es(实现原理是基于监听数据库binglog日志改动,执行日志重放 )![]()
![]()
![]()
-














浙公网安备 33010602011771号