[Usaco2014 Open]Gold Fair Photography(hash)
最近做了usaco2014 open的金组,果然美帝的题还是没有太简单啊QAQ,被每年的月赛骗了QAQ
不过话说官方题解真心棒(虽然英文的啃得好艰难,我英语渣你们别鄙视我= =),标程超级优美QAQ
按照标程打,学到了好多STL的用法= =(没办法,我c++底子弱)
这道题嘛,可以发现对于每个区间,只要左边界确定,可能的集合就一共只有8种了
考虑前缀和,发现若L~R为可行解,则对于所有种类的牛,有S[R]-S[L]=K或0
如何防止枚举K,可以发现在该集合中B的s[L][bi]减去s[L][b0]就行了
那么就hash,枚举集合B,求出hash值,直接做就行了
CODE:(直接贴标程了,Map真的用的是神出鬼没啊QAQ)
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cassert>
#include <map>
using namespace std;
#define MAXN 100010
#define GROUPS 8
int MB[MAXN][GROUPS];
int MF[MAXN][GROUPS];
int PS[MAXN][GROUPS];
int main() {
freopen("fairphoto.in", "r", stdin);
freopen("fairphoto.out", "w", stdout);
int N, K; cin >> N >> K;
vector<pair<int, int> > A(N);
for(int i = 0; i < N; i++) {
cin >> A[i].first >> A[i].second;
A[i].second--;
}
sort(A.begin(), A.end());
/* Construct backstep masks */
for(int i = 0; i < GROUPS; i++) {
MB[0][i] = 1 << A[0].second;
}
for(int i = 1; i < N; i++) {
int bt = 1 << A[i].second;
MB[i][0] = bt;
for(int j = 1; j < GROUPS; j++) {
if(MB[i - 1][j] & bt) {
MB[i][j] = MB[i - 1][j];
} else {
MB[i][j] = bt | MB[i - 1][j - 1];
}
}
}
/* Construct forward step masks */
for(int i = 0; i < GROUPS; i++) {
MF[N - 1][i] = 1 << A[N - 1].second;
}
for(int i = N - 2; i >= 0; i--) {
int bt = 1 << A[i].second;
MF[i][0] = bt;
for(int j = 1; j < GROUPS; j++) {
if(MF[i + 1][j] & bt) {
MF[i][j] = MF[i + 1][j];
} else {
MF[i][j] = bt | MF[i + 1][j - 1];
}
}
}
/* Construct partial sums */
for(int i = 0; i < N; i++) {
memcpy(PS[i + 1], PS[i], sizeof(PS[i]));
++PS[i + 1][A[i].second];
}
int result = -1;
for(int j = K - 1; j < GROUPS; j++) {
vector<int> V(1 + GROUPS);
map<vector<int>, int> cost_map;
/* Compute the earliest starts for given masks
* and normalized partial sums. */
for(int i = N - 1; i >= 0; i--) {
int base = -1;
int m = V[GROUPS] = MF[i][j];
if(__builtin_popcount(m) <= j) continue;
for(int k = 0; k < GROUPS; k++) {
if(m & 1 << k) {
if(base == -1) {
base = PS[i][k];
}
V[k] = PS[i][k] - base;
} else {
V[k] = PS[i][k];
}
}
cost_map[V] = A[i].first;
}
/* Find best start points for each ending position. */
for(int i = 0; i < N; i++) {
int base = -1;
int m = V[GROUPS] = MB[i][j];
if(__builtin_popcount(m) <= j) continue;
for(int k = 0; k < GROUPS; k++) {
if(m & 1 << k) {
if(base == -1) {
base = PS[i + 1][k];
}
V[k] = PS[i + 1][k] - base;
} else {
V[k] = PS[i + 1][k];
}
}
map<vector<int>, int>::iterator it = cost_map.find(V);
if(it != cost_map.end() && it->second < A[i].first) {
result = max(result, A[i].first - it->second);
}
}
}
cout << result << endl;
return 0;
}
浙公网安备 33010602011771号