【Udacity】朴素贝叶斯
- 
机器学习就像酿制葡萄酒——好的葡萄(数据)+好的酿酒方法(机器学习算法) 
- 
监督分类 supervised classification 
- 
Features ——>Labels 
- 
保留10%的数据作为测试数据集 
监督学习之朴素贝叶斯 Naive Bayes——寻找决策面
scikit-learn使用入门
googlesearch sklearn+Naive Bayes
关于sklearn版本
- 视频——基于v0.17
- 项目——基于v0.18
sklearn的现在稳定版为0.18,官方文档也升级到了0.18。但是,0.18版并不兼容0.17的代码。如果你安装了0.18版,sklearn.cross_validation, sklearn.grid_search and sklearn.learning_curve 等方法都不能直接调用。
新的API调用方法是
from sklearn.model_selection import train_test_split
计算准确度
def NB_Accuracy(features_train, labels_train, features_test, labels_test):
    
    ### import the sklearn module for GaussianNB
    from sklearn.naive_bayes import GaussianNB
    ### create classifier
    clf = GaussianNB()
    ### fit the classifier on the training features and labels
    clf.fit(features_train, labels_train)
    ### use the trained classifier to predict labels for the test features
    pred = clf.predict(features_test)
    ### calculate and return the accuracy on the test data
    ### this is slightly different than the example, 
    ### where we just print the accuracy
    ### you might need to import an sklearn module
    ### Method #1:
    accuracy = clf.score(features_test, labels_test)
    return accuracy
    ### Method #2:
    from sklearn.metrics import accuracy_score
    print accuracy_score(pred, labels_test)

 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号