洛谷4030(Codeplus11月月赛)可做题1

题目:https://www.luogu.org/problemnew/show/P4030

原来一个方阵巧妙的充要条件是该方阵的每个2*2子方阵都是巧妙的!!!

可以把每一行选的列视为一个排列,需要任意交换排列中两个数而代表的和不变。

比如第1个和第2个能交换,即前两列巧妙;前两列巧妙就是前两列的每个2*2子方阵巧妙。

  比如两行中第1个和第2个能交换即左边第一个2*2巧妙,第2个和第3个能交换即左边第二个2*2巧妙;满足这两条而这样第1个和第3个也能交换了!

1.可以把“以该点为右下角的2*2巧妙”记作这个点为1,然后求最大连续1的方阵;

2.可以记录“以该点为右下角的矩形中有几个不巧妙的2*2”,然后判断,如代码。

#include<iostream>
#include<cstdio>
using namespace std;
int n,m,t,f[505][505],a[505][505],x,y,k;
int main()
{
    scanf("%d%d%d",&n,&m,&t);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
            if(i>=2&&j>=2)f[i][j]=f[i][j-1]+(a[i][j]+a[i-1][j-1]!=a[i-1][j]+a[i][j-1]);
        }
    for(int i=2;i<=n;i++)
        for(int j=2;j<=m;j++)
            f[i][j]+=f[i-1][j];
    while(t--)
    {
        scanf("%d%d%d",&x,&y,&k);
        if(f[x+k-1][y+k-1]-f[x][y+k-1]-f[x+k-1][y]+f[x][y])printf("N\n");
        else printf("Y\n");
    }
    return 0;
}

 

posted on 2018-02-26 11:18  Narh  阅读(96)  评论(0编辑  收藏