from cgi import print_form
from math import log
from msilib import datasizemask
import os
from matplotlib import pyplot as plt
import numpy as np
import operator
import csv
from sklearn import *
from sklearn.tree import DecisionTreeClassifier
def loaddata ():
dataSet = [[0, 0,0,0,0,0, 'yes'],
[1, 0,1,0,0,0,'yes'],
[1, 0,0,0,0,0,'yes'],
[0, 0,1,0,0,0,'yes'],
[2, 0,0,0,0,0,'yes'],
[0, 1,0,0,1,1,'yes'],
[1, 1,0,1,1,1,'yes'],
[1, 1,0,0,1,0, 'yes'],
[1, 1,1,1,1,0,'no'],
[0, 2,2,0,2,1,'no'],
[2, 2,2,2,2,0,'no'],
[2, 0,0,2,2,1,'no'],
[0, 1,0,1,0,0, 'no'],
[2, 1,1,1,0,0,'no'],
[1, 1,0,0,1,1,'no'],
[2, 0,0,2,2,0,'no'],
[0, 0,1,1,1,0,'no']]
feature_name = ['a1','a2','a3','a4','a5','a6']
return dataSet, feature_name
def loaddata_new():
# 定义文件路径
csv_path = 'watermelon2.csv'
with open(csv_path,'r',encoding='utf-8-sig')as fp:
dataSet = [i for i in csv.reader(fp)] # csv.reader 读取到的数据是list类型
feature_name = ['a1','a2','a3','a4','a5','a6']
return dataSet, feature_name
def entropy(dataSet):
#数据集条数
m = len(dataSet)
#保存所有的类别及属于该类别的样本数
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
#保存熵值
e = 0.0
#补充计算信息熵的代码
for key in labelCounts:
prob = float(labelCounts[key]) / m
e -= prob * log(prob,2)
return e
def splitDataSet(dataSet, axis, value):
#创建返回的数据集列表
retDataSet=[]
#遍历数据集
for featVec in dataSet:
if featVec[axis]==value:
#去掉axis特征
reduceFeatVec=featVec[:axis]
#将符合条件的添加到返回的数据集
reduceFeatVec.extend(featVec[axis+1:])
retDataSet.append(reduceFeatVec)
#返回划分后的数据集
return retDataSet
def chooseBestFeature(dataSet):
n = len(dataSet[0]) - 1
#计数整个数据集的熵
baseEntropy = entropy(dataSet)
bestInfoGain = 0.0; bestFeature = -1
#遍历每个特征
for i in range(n):
#获取当前特征i的所有可能取值
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
#遍历特征i的每一个可能的取值
for value in uniqueVals:
#按特征i的value值进行数据集的划分
subDataSet = splitDataSet(dataSet, i, value)
#补充计算条件熵的代码
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob * entropy((subDataSet))
#计算信息增益
infoGain = baseEntropy - newEntropy
#保存当前最大的信息增益及对应的特征
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
def classVote(classList):
#定义字典,保存每个标签对应的个数
classCount={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
#排序
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def trainTree(dataSet,feature_name):
classList = [example[-1] for example in dataSet]
#所有类别都一致
if classList.count(classList[0]) == len(classList):
return classList[0]
#数据集中没有特征
if len(dataSet[0]) == 1:
return classVote(classList)
#选择最优划分特征
bestFeat = chooseBestFeature(dataSet)
bestFeatName = feature_name[bestFeat]
myTree = {bestFeatName:{}}
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
#遍历uniqueVals中的每个值,生成相应的分支
for value in uniqueVals:
sub_feature_name = feature_name[:]
# 生成在dataSet中bestFeat取值为value的子集;
sub_dataset = splitDataSet(dataSet,bestFeat,value) #补充代码
# 根据得到的子集,生成决策树
myTree[bestFeatName][value] = trainTree(sub_dataset,feature_name) #补充代码
return myTree
def tree3(clf):
fig = plt.figure(figsize=(35, 10))
tree.plot_tree(clf, fontsize=8)
fig.savefig(os.path.join(".\\", "tree3.png"))
myDat,feature_name = loaddata()
t = np.array(myDat)
myTree = trainTree(myDat,feature_name)
tree3(myTree)
print(myTree)
# print(t)
# x = t[:,:-1]
# y = t[:,-1]
# tr = DecisionTreeClassifier(criterion="entropy")
# tr.fit(x,y)
# tree3(tr)
# tree.plot_tree(tr)
# print(x)
# print(y)
# myDat,feature_name = loaddata()
# myTree = trainTree(myDat,feature_name)
# print(myTree)