牛客网暑期ACM多校训练营(第一场)

---恢复内容开始---

传送门

Monotonic Matrix

题意:计算多少种矩阵满足

Ai, j ∈ {0, 1, 2} for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Ai, j ≤ Ai + 1, j for all 1 ≤ i < n, 1 ≤ j ≤ m.

Ai, j ≤ Ai, j + 1 for all 1 ≤ i ≤ n, 1 ≤ j < m.

这三条性质。

 

本题可以转换为询问有多少种存在两条路径从左下到右上,互相不穿过的矩阵

 

可以将矩阵向左上角平移一个单位,改询问为从A到B,从C到D有多少种合法路径

因此答案就是C(m+n,n)*C(m+n,n)-C(m+n,n-1)*C(m+n,m-1)

就是A到B的路径方案数*C到D的路径方案数减去不合法的路径方案数,不合法的就是相互穿过的路径,

相互穿过的路径,就是改道的路径

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <map>
#include <queue>
#include <vector>
#include <cstring>
#include <iomanip>
//#include <unordered_map>
#include <set>
#include <ctime>
#include <sstream>
#include <stack>
//CLOCKS_PER_SEC
#define se second
#define fi first
#define ll long long
#define Pii pair<int,int>
#define Pli pair<ll,int>
#define ull unsigned long long
#define pb push_back
#define fio ios::sync_with_stdio(false);cin.tie(0)
const int N=2e3+10;
const int INF=0x3f3f3f3f;
using namespace std;
const ll mod=1e9+7;
ll c[N][N];
int main()
{
    int n,m;
    c[0][0]=1;
    for(int i=1;i<=2000;i++){
        for(int j=0;j<=i;j++){
            if(j==0)c[i][j]=1;
            else c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
        }
    }
    while(~scanf("%d %d",&n,&m)){
        cout<<(c[n+m][n]*c[n+m][n]%mod-c[n+m][n-1]*c[n+m][m-1]%mod+mod)%mod<<endl;
    }
    return 0;
}
/*
 3 1 3
 1 2
 1 2
 2 3
 1 3
 */
View Code

 

Symmetric Matrix

题意:问你有多少矩阵满足各个权值为0,1,2且主对角线为0,行上权和为2的矩阵

题解:转化为邻接矩阵,行上权值为2说明各个点满足度数为2,主对角线为0说明无自环;题目转换为求给你n个点,求能构成k个环的方案数(k<=n/2)

然后就变成经典的n球成环推递推公式的问题。具体的推的步骤看这篇https://blog.csdn.net/kzn2683331518/article/details/81142483

#include<bits/stdc++.h>
//CLOCKS_PER_SEC
#define se second
#define fi first
#define ll long long
#define Pii pair<int,int>
#define Pli pair<ll,int>
#define ull unsigned long long
#define pb push_back
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
const int N=1e5+10;
const int INF=0x3f3f3f3f;
const int mod=1e9+7;
using namespace std;

ll f[N];
int main(){
    ll n,m,k;
    f[1]=0;f[2]=f[3]=1;
    while(~scanf("%lld%lld",&n,&m)){
        for(ll i=4;i<=n;i++){
            f[i]=((i-1)*(f[i-1]+f[i-2])-(((i-1)*(i-2)/2)%m)*f[i-3]%m+m)%m;

        }
        cout<<f[n]<<endl;
    }
    return 0;
}
View Code

Fluorescent 2

待补

 

Two Graphs

题意:给你两个无向简单图,问你存在多少种同构

题解:next_permutation保证跑出所有的映射方案,一一将边映射过去,验证是否满足条件,用set维护不同的方案。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <map>
#include <queue>
#include <vector>
#include <cstring>
#include <iomanip>
//#include <unordered_map>
#include <set>
#include <ctime>
#include <sstream>
#include <stack>
//CLOCKS_PER_SEC
#define se second
#define fi first
#define ll long long
#define Pii pair<int,int>
#define Pli pair<ll,int>
#define ull unsigned long long
#define pb push_back
#define fio ios::sync_with_stdio(false);cin.tie(0)
const int N=1e3+10;
const int INF=0x3f3f3f3f;
using namespace std;
const ll mod=1e9+7;
bool link[10][10],vis[10][10];
Pii p[N],P[N];
int a[N];
set<vector<bool> >s;
int main()
{
    int n,m1,m2;
    while(scanf("%d%d%d",&n,&m1,&m2)==3){
        for(int i=1;i<=m1;i++){
            cin>>p[i].fi>>p[i].se;
        }
        for(int i=1;i<=m2;i++){
            int u,v;cin>>u>>v;
            P[i].fi=u,P[i].se=v;
            link[u][v]=link[v][u]=1;
        }
        for(int i=1;i<=n;i++)a[i]=i;
        vector<bool>vec(50);
        do{
            int f=0;
            for(int i=1;i<=m1;i++){
                int u=p[i].fi,v=p[i].se;
                if(!link[a[u]][a[v]]){
                    f=1;
                    break;
                }
                vis[a[u]][a[v]]=vis[a[v]][a[u]]=1;
            }
            if(!f){
                for(int i=1;i<=m2;i++){
                    int u=P[i].fi,v=P[i].se;
                    if(vis[u][v]){
                        vec[i]=1;
                    }
                }
                s.insert(vec);
            }
            for(int i=1;i<=m2;i++)vec[i]=0;
            memset(vis,0,sizeof(vis));
        }while(next_permutation(a+1,a+1+n));
        cout<<(int)s.size()<<endl;
        memset(link,0,sizeof(link));
        s.clear();
    }
    
    return 0;
}
/*
 3 1 3
 1 2
 1 2
 2 3
 1 3
 */
View Code

 

Removal

题意:给你n个数,问你删除m个数后能有多少种不同的顺序

题解:dp,记录每个数,它前一次出现的位置。pre[i]表示当前第i个数字,它前一次出现的位置。为了保证dp不出现重复的方案,那么我们必须删除重复的区间。

首先dp[i][j], i表示当前匹配的位置,j表示删了多少数,dp[i][j]=dp[i-1][j]+dp[i-1][j-1],当前位置且删除j个数,可以从i-1位置直接转移过来,不删除第i个元素,也可以从i-1位置转移过来,并且删除i位置上的数。同时我们要减去重复的区间,也就是dp[pre[i]-1][j-(i-pre[i])],因为第i个位置和第pre[i]位置的元素相同,如果从pre[i]+1这个位置删除到i这个位置,那么整个序列都会相同

#include<bits/stdc++.h>
//CLOCKS_PER_SEC
#define se second
#define fi first
#define ll long long
#define Pii pair<int,int>
#define Pli pair<ll,int>
#define ull unsigned long long
#define pb push_back
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
const int N=1e5+10;
const int INF=0x3f3f3f3f;
const int mod=1e9+7;
using namespace std;
ll dp[N][20];
int pre[N];
int prem[N];
int a[N];
int main(){
    int n,m,k;
    while(~scanf("%d%d%d",&n,&m,&k)){
        memset(prem,0,sizeof(prem));
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++){
            scanf("%d",a+i);
            pre[i]=prem[a[i]];
            prem[a[i]]=i;
        }
        dp[0][0]=1;
        for(int i=1;i<=n;i++){
            dp[i][0]=dp[i-1][0];
            for(int j=1;j<=m;j++){
                if(i<j)break;
                dp[i][j]=dp[i-1][j-1]+dp[i-1][j];
                if(pre[i]&&j-(i-pre[i])>=0)dp[i][j]-=dp[pre[i]-1][j-(i-pre[i])];
                dp[i][j]%=mod;
                dp[i][j]=(dp[i][j]+mod)%mod;
            }
        }
        printf("%lld\n",dp[n][m]);
    }
    return 0;
}
View Code

 

Sum of Maximum

题意:求这个sigma

题解:我们对a1...n进行排序,因为这个顺序显然不会影响答案,那么我们就要考虑每个x,当x位于ai ai+1之间,那么整个因为a1到ai为递增,所以前半段可以随便选值都不会超过x,后半段就需要容斥,展开公式。然后公式打起来太麻烦了,详细题解传送门

  以及拉格朗日插值

  收获杜教拉格朗日插值模版

#include <bits/stdc++.h>
//CLOCKS_PER_SEC
#define se second
#define fi first
#define ll long long
#define Pii pair<int,int>
#define Pli pair<ll,int>
#define ull unsigned long long
#define pb push_back
#define fio ios::sync_with_stdio(false);cin.tie(0)
const double Pi=3.14159265;
const int N=8e5+5;
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
using namespace std;
namespace polysum {
    #define rep(i,a,n) for (int i=a;i<n;i++)
    #define per(i,a,n) for (int i=n-1;i>=a;i--)
    const int D=2010;
    ll a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][2],C[D];
    ll powmod(ll a,ll b){ll res=1;a%=mod;assert(b>=0);for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
    ll calcn(int d,ll *a,ll n) { // a[0].. a[d]  a[n]
        if (n<=d) return a[n];
        p1[0]=p2[0]=1;
        rep(i,0,d+1) {
            ll t=(n-i+mod)%mod;
            p1[i+1]=p1[i]*t%mod;
        }
        rep(i,0,d+1) {
            ll t=(n-d+i+mod)%mod;
            p2[i+1]=p2[i]*t%mod;
        }
        ll ans=0;
        rep(i,0,d+1) {
            ll t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod;
            if ((d-i)&1) ans=(ans-t+mod)%mod;
            else ans=(ans+t)%mod;
        }
        return ans;
    }
    void init(int M) {
        f[0]=f[1]=g[0]=g[1]=1;
        rep(i,2,M+5) f[i]=f[i-1]*i%mod;
        g[M+4]=powmod(f[M+4],mod-2);
        per(i,1,M+4) g[i]=g[i+1]*(i+1)%mod;
    }
    ll polysum(ll m,ll *a,ll n) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]
        ll b[D];
        for(int i=0;i<=m;i++) b[i]=a[i];
        b[m+1]=calcn(m,b,m+1);
        rep(i,1,m+2) b[i]=(b[i-1]+b[i])%mod;
        return calcn(m+1,b,n-1);
    }
    ll qpolysum(ll R,ll n,ll *a,ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]*R^i
        if (R==1) return polysum(n,a,m);
        a[m+1]=calcn(m,a,m+1);
        ll r=powmod(R,mod-2),p3=0,p4=0,c,ans;
        h[0][0]=0;h[0][1]=1;
        rep(i,1,m+2) {
            h[i][0]=(h[i-1][0]+a[i-1])*r%mod;
            h[i][1]=h[i-1][1]*r%mod;
        }
        rep(i,0,m+2) {
            ll t=g[i]*g[m+1-i]%mod;
            if (i&1) p3=((p3-h[i][0]*t)%mod+mod)%mod,p4=((p4-h[i][1]*t)%mod+mod)%mod;
            else p3=(p3+h[i][0]*t)%mod,p4=(p4+h[i][1]*t)%mod;
        }
        c=powmod(p4,mod-2)*(mod-p3)%mod;
        rep(i,0,m+2) h[i][0]=(h[i][0]+h[i][1]*c)%mod;
        rep(i,0,m+2) C[i]=h[i][0];
        ans=(calcn(m,C,n)*powmod(R,n)-c)%mod;
        if (ans<0) ans+=mod;
        return ans;
    }
} // polysum::init();
ll pow2(ll a,ll b)
{
    ll res=1;
    while(b)
    {
        if(b&1) res=res*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return res;
}
ll a[N],b[N];
int main(){
     polysum::init(1010);
    int n;while(~scanf("%d",&n)){
        for(int i=1;i<=n;i++){
            scanf("%lld",&a[i]);
        }
        sort(a+1,a+1+n);
        ll now=1;
        ll ans=0;
        for(int i=1;i<=n;i++){
            if(a[i]==a[i-1]){
                now*=a[i];now%=mod;
                continue;
            }
            b[0]=0;
            for(int j=1;j<=n-i+1;j++){
                b[j]=j*(((pow2(j,n-i+1)-pow2(j-1,n-i+1))+mod)%mod)%mod;
            }
            ll tmp=(polysum::polysum(n-i+1,b,a[i]+1)-polysum::polysum(n-i+1,b,a[i-1]+1)+mod)%mod;
            ans+=now*tmp%mod;
            ans%=mod;
            now*=a[i];now%=mod;
        }
        printf("%lld\n",ans);
    }
    return 0;
}
View Code

 

Steiner Tree

 

Longest Path

 

Substring

 

Different Integers

题意:给你n个数,每次询问l,r,问你[1,l][r,n]有多少种不同的数字

题解:玄学莫队,离线暴力查询。或者树状数组记录一个数出现最早的位置和最晚的位置,倒着从后往前扫一遍,如果第i位置是某个数最早出现的位置,则在该数最晚出现的位置标1。如果当前i是某个询问的l,则进行[1,r]求和操作,将最晚出现的点数全部求和,那么得到的和一定是只出现的[l,r]范围内的数的个数,所有的不同的数的数目-减去只出现在里面的数就是询问的答案。

还有主席树,将n个数复制一遍,将两个区间查询,变成从只在中间询问的单区间查询

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <map>
#include <queue>
#include <vector>
#include <cstring>
#include <iomanip>
//#include <unordered_map>
#include <set>
#include <ctime>
#include <sstream>
#include <stack>
//CLOCKS_PER_SEC
#define se second
#define fi first
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define Pii pair<int,int>
#define Pli pair<ll,int>
#define ull unsigned long long
#define pb push_back
#define fio ios::sync_with_stdio(false);cin.tie(0)
const int N=1e5+10;
const int INF=0x3f3f3f3f;
using namespace std;
const ll mod=1e9+7;
inline int read(){
    int x=0;char ch=getchar();
    while (ch<'0'||ch>'9') ch=getchar();
    while (ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();}
    return x;
}
struct BIT{
    int val[N];
    inline int lowbit(int x){
        return x&(-x);
    }
    inline void init(){
        memset(val,0,sizeof(val));
    }
    inline void add(int x,int d){
        while(x<N){
            val[x]+=d;
            x+=lowbit(x);
        }
    }
    inline int query(int x){
        int ans=0;
        while(x){
            ans+=val[x];
            x-=lowbit(x);
        }
        return ans;
    }
    inline int Q(int l,int r){
        return query(r)-query(l-1);
    }
}T;
int l[N],r[N];
int a[N];
int ans[N];
vector<int>L[N];
vector<pair<Pii,int> >Q[N];
int main(){
    int n,m;
    while(~scanf("%d%d",&n,&m)){
        int tot=0;
        T.init();
        memset(l,0,sizeof(l));
        for(int i=1;i<=n;i++){
            a[i]=read();
            if(!l[a[i]])l[a[i]]=i,tot++;
            r[a[i]]=i;
        }
        for(int i=1;i<=n;i++){
            if(l[i])L[l[i]].pb(r[i]);
        }
        for(int i=1;i<=m;i++){
            int x=read()+1,y=read()-1;
            if(x>y)ans[i]=tot;
            else  Q[x].pb({{x,y},i});
        }
        for(int i=n;i>=0;i--){
            for(int j=0;j<(int)L[i].size();j++){
                T.add(L[i][j],1);
            }
            for(int j=0;j<(int)Q[i].size();j++){
                ans[Q[i][j].se]=tot-T.query(Q[i][j].fi.se);
            }
            L[i].clear();
            Q[i].clear();
        }
        for(int i=1;i<=m;i++){
            printf("%d\n",ans[i]);
        }
    }
    return 0;
}
树状数组
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <map>
#include <queue>
#include <vector>
#include <cstring>
#include <iomanip>
//#include <unordered_map>
#include <set>
#include <ctime>
#include <sstream>
#include <stack>
//CLOCKS_PER_SEC
#define se second
#define fi first
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define Pii pair<int,int>
#define Pli pair<ll,int>
#define ull unsigned long long
#define pb push_back
#define fio ios::sync_with_stdio(false);cin.tie(0)
const int N=1e5+10;
const int INF=0x3f3f3f3f;
using namespace std;
const ll mod=1e9+7;
int a[N];
int cnt[N];
int n,m;
int L=1,R=0;
struct node {
    int l,r,id;
}Q[N];
int ans[N];int pos[N];
int vis[N];
int tot=0;
bool cmp(node x,node y){
    if(pos[x.l]==pos[y.l]){
        return x.r<y.r;
    }
    return pos[x.l]<pos[y.l];
}
void add(int x){
    vis[a[x]]++;
    if(vis[a[x]]==cnt[a[x]])tot++;
}
void del(int x){
    if(vis[a[x]]==cnt[a[x]])tot--;
    vis[a[x]]--;
}
inline int read(){
    int x=0;char ch=getchar();
    while (ch<'0'||ch>'9') ch=getchar();
    while (ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();}
    return x;
}
int main(){
    fio;
    while(~scanf("%d %d",&n,&m)){
        memset(cnt,0,sizeof(cnt));
        memset(vis,0,sizeof(vis));
        L=1,R=0;
        tot=0;
        int sz=1000;
        int pp=0;
        for(int i=1;i<=n;i++){
            a[i]=read(),cnt[a[i]]++,pos[i]=i/sz;
            if(cnt[a[i]]==1)pp++;
        }
        for(int i=1;i<=m;i++){
            Q[i].l=read();Q[i].r=read();
            Q[i].l++;
            Q[i].r--;
            Q[i].id=i;
        }
        sort(Q+1,Q+1+m,cmp);
        for(int i=1;i<=m;i++){
            if(Q[i].l>Q[i].r){
                ans[Q[i].id]=pp;
                continue;
            }
            while(L<Q[i].l){
                del(L);
                L++;
            }
            while(L>Q[i].l){
                add(L-1);
                L--;
            }
            while(R<Q[i].r){
                R++;
                add(R);
            }
            while(R>Q[i].r){
                del(R);
                R--;
            }
            ans[Q[i].id]=pp-tot;
        }
        for(int i=1;i<=m;i++)printf("%d\n",ans[i]);
    }
    return 0;
}
莫队

 

posted @ 2018-07-27 22:22  采蘑菇的小西佬  阅读(291)  评论(0编辑  收藏