[洛谷P3807]【模板】卢卡斯定理
题目大意:给你$n,m,p(p \in \rm prime)$,求出$C_{n + m}^m\bmod p(可能p\leqslant n,m)$
题解:卢卡斯$Lucas$定理,$C_B^A\bmod p$等于把$A,B$写成$p$进制时每一位的组合数相乘,设$A=a_n\times p^n+a_{n-1}\times p^{n-1}+\cdots+a_0$,$B=b_m\times p^m+b_{m-1}\times p^{m-1}+\cdots+b_0$,$C_B^A\bmod p=\prod\limits_{i=0}^{\min\{n,m\}}C_{b_i}^{a_i}$
卡点:无
C++ Code:
#include <cstdio>
#define maxn 100010
int Tim, n, m, mod;
long long fac[maxn], inv[maxn];
inline long long CC(long long a, long long b) {
if (a < b) return 0;
return fac[a] * inv[b] % mod * inv[a - b] % mod;
}
inline long long C(long long a, long long b) {
if (a < b) return 0;
if (a <= mod) return CC(a, b);
long long res = 1;
while (a && b && res) {
res = res * CC(a % mod, b % mod) % mod;
a /= mod, b /= mod;
}
return res;
}
int main() {
scanf("%d", &Tim);
fac[0] = fac[1] = inv[0] = inv[1] = 1;
while (Tim --> 0) {
scanf("%d%d%d", &n, &m, &mod);
for (long long i = 2; i <= mod; i++) fac[i] = fac[i - 1] * i % mod;
for (int i = 2; i <= mod; i++) inv[i] = inv[mod % i] * (mod - mod / i) % mod;
for (int i = 2; i <= mod; i++) inv[i] = inv[i] * inv[i - 1] % mod;
printf("%lld\n", C(n + m, m));
}
return 0;
}

浙公网安备 33010602011771号