[洛谷P2657][SCOI2009]windy数
题目大意:不含前导零且相邻两个数字之差至少为$2$的正整数被称为$windy$数。问$[A, B]$内有多少个$windy$数?
题解:$f_{i, j}$表示数有$i$位,最高位为$j$(可能为$0$),$f_{i, j} = \sum\limits_{0 \leq k \leq 9, |k - j| > 2} f_{i - 1, k}$
然后求出$[0, A)$和$[0, B]$分别有多少个$windy$数,相减即可
卡点:无
C++ Code:
#include <cstdio>
using namespace std;
int f[11][11], a, b;
int num[11], cnt, ans;
int abs(int x) {return x > 0 ? x : -x;};
int work(int x) {
cnt = ans = 0;
while (x) num[++cnt] = x % 10, x /= 10;
for (int i= cnt - 1; i; i--)
for (int j = 1; j < 10; j++)
ans += f[i][j];
num[cnt+1] = -2;
for (int i = cnt; i; i--) {
for (int j = 0; j < num[i]; j++)
if (abs(num[i+1] - j) >= 2) ans += f[i][j];
if (abs(num[i] - num[i+1]) < 2) break;
}
return ans;
}
int main() {
scanf("%d%d", &a, &b);
for (int i = 1; i <= 10; i++)
for (int j = 0; j < 10; j++)
if (i == 1) f[i][j] = 1;
else for (int k = 0; k < 10; k++) if (abs(j - k) >= 2) f[i][j] += f[i - 1][k];
int res = work(b + 1) - work(a);
printf("%d\n", res);
return 0;
}

浙公网安备 33010602011771号