[洛谷P5340][TJOI2019]大中锋的游乐场
题目大意:有$n(n\leqslant10^4)$个点,$m(m\leqslant10^5)$条边的无向图,每个点有一个属性$A/B$,要求$|cnt_A-cnt_B|\leqslant k(k\leqslant10)$,问$S\to T$最短路径
题解:把每个点拆成$2k+1$个点,分别标号为$[-k,k]$,表示到这$cnt_A-cnt_B$的值,跑最短路即可。
卡点:各种地方没有把$n$改成$n(2k+1)$
C++ Code:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define maxn (10010 * 21)
#define maxm (100010 * 21)
int head[maxn], cnt;
struct Edge {
int to, nxt, w;
} e[maxm << 1];
inline void addedge(int a, int b, int c) {
e[++cnt] = (Edge) { b, head[a], c }; head[a] = cnt;
}
int n, m, k, K, S, T;
namespace Graph {
int V[maxn << 2];
long long dis[maxn];
inline int getmin(int a, int b) { return dis[a] < dis[b] ? a : b; }
void modify(int rt, int l, int r, int p, int num) {
if (l == r) {
V[rt] = num;
return ;
}
const int mid = l + r >> 1;
if (p <= mid) modify(rt << 1, l, mid, p, num);
else modify(rt << 1 | 1, mid + 1, r, p, num);
V[rt] = getmin(V[rt << 1], V[rt << 1 | 1]);
}
long long dijkstra(int S, int T) {
const int N = n * K + 1;
memset(dis, 0x3f, sizeof dis);
memset(V, 0, sizeof V);
dis[S] = 0, modify(1, 1, N, S, S);
for (int TIM = n * K + 1; TIM; --TIM) {
int u = V[1];
modify(1, 1, N, u, 0);
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (dis[v] > dis[u] + e[i].w) {
dis[v] = dis[u] + e[i].w;
modify(1, 1, N, v, v);
}
}
}
return dis[T];
}
}
int TIM, w[maxn];
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> TIM;
while (TIM --> 0) {
std::cin >> n >> m >> k;
K = 2 * k + 1;
for (int i = 1, x; i <= n; ++i) std::cin >> x, w[i] = x - 1;
for (int i = 0, a, b, c; i < m; ++i) {
std::cin >> a >> b >> c;
--a, --b;
for (int j = 2; j <= K; ++j) {
if (w[b + 1]) addedge(a * K + j - 1, b * K + j, c);
else addedge(a * K + j, b * K + j - 1, c);
if (w[a + 1]) addedge(b * K + j - 1, a * K + j, c);
else addedge(b * K + j, a * K + j - 1, c);
}
}
std::cin >> S >> T;
--S, --T;
for (int j = 1; j <= K; ++j) addedge(T * K + j, n * K + 1, 0);
int St = S * K + k + 1;
if (w[S + 1]) ++St; else --St;
long long ans = Graph::dijkstra(St, n * K + 1);
std::cout << (ans == 0x3f3f3f3f3f3f3f3f ? -1 : ans) << '\n';
if (TIM) {
memset(head, 0, sizeof head);
cnt = 0;
}
}
return 0;
}

浙公网安备 33010602011771号