[洛谷P5107]能量采集
题目大意:有一张$n(n\leqslant50)$个点$m(m\leqslant n(n-1))$条边的有向图,每个点还有一个自环,每个点有一个权值。每一秒钟,每个点的权值会等分成出边个数,流向出边。$q(q\leqslant5\times10^4)$次询问,每次问$t$秒时每个点的权值,只需要输出异或和
题解:矩阵快速幂,可以构造出转移矩阵,发现直接做的复杂度是$O(qn^3\log_2t)$,不可以通过。
然后预处理转移矩阵的$2^i$次幂,就可以$O(n^2)$完成一次转移(向量乘矩阵),这样复杂度是$O(qn^2log_2t)$,看起来不可以通过本题,但其实也可以了。
题解中说是把预处理中的二进制改成$k$进制,这样复杂度是$O(n^3k\log_kt+qn^2\log_kt)$
卡点:无
C++ Code:
#include <cstdio>
#include <cctype>
namespace __IO {
namespace R {
int x, ch;
inline int read() {
while (isspace(ch = getchar())) ;
for (x = ch & 15; isdigit(ch = getchar()); ) x = x * 10 + (ch & 15);
return x;
}
}
}
using __IO::R::read;
#define maxn 50
const int mod = 998244353;
namespace Math {
inline int pw(int base, int p) {
static int res;
for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
return res;
}
inline int inv(int x) { return pw(x, mod - 2); }
}
struct Matrix {
#define N 50
int n, m;
int s[N][N];
inline Matrix operator * (const Matrix &rhs) {
Matrix res;
res.n = n, res.m = rhs.m;
for (register int i = 0; i < n; ++i) {
for (register int j = 0; j < rhs.m; ++j) {
static long long t; t = 0;
for (register int k = 0; k < m; ++k) t += static_cast<long long> (s[i][k]) * rhs.s[k][j] % mod;
res.s[i][j] = t % mod;
}
}
return res;
}
#undef N
} I, base[32], ans;
int n, m, q;
int oud[maxn];
int main() {
n = read(), m = read(), q = read();
for (int i = 0; i < n; ++i) I.s[0][i] = read(), base[0].s[i][i] = 1, oud[i] = 1;
I.n = 1, I.m = n;
while (m --> 0) {
int a = read() - 1, b = read() - 1;
++base[0].s[a][b];
++oud[a];
}
base[0].n = base[0].m = n;
for (int i = 0, t; i < n; ++i) {
t = Math::inv(oud[i]);
for (int j = 0; j < n; ++j) base[0].s[i][j] = static_cast<long long> (t) * base[0].s[i][j] % mod;
}
for (int i = 1; i < 32; ++i) base[i] = base[i - 1] * base[i - 1];
while (q --> 0) {
Matrix res = I;
for (int i = read(); i; i &= i - 1) res = res * base[__builtin_ctz(i)];
int ans = 0;
for (int i = 0; i < n; ++i) ans ^= res.s[0][i];
printf("%d\n", ans % mod);
}
return 0;
}

浙公网安备 33010602011771号