[洛谷P5166]xtq的口令
题目大意:给出一张有向图,保证任何时候边都是从编号大的向编号小连。两个操作:
- $1\;l\;r:$表示若编号在区间$[l,r]$内的点被染色了,问至少还需要染多少个点才可以使得整张图被染色。一个点会被染色的要求是:要么直接被染色,要么它所连向的点中至少一个被染色
- $2\;l\;r\;x:$表示编号在区间$[l,r]$中的所有点都向$x$连一条边,保证$x<l$
题解:发现这张图是一个$DAG$,然后只要把所有出度为$0$的点染色就一定可以把所有点染色。
于是就记录每个点是否出度为$0$,询问是区间$[1,l)\cup(r,n]$中出度为$0$的点的个数,修改就把区间$[l,r]$中出度为$0$的点改为非$0$。可以用线段树维护
卡点:无
C++ Code:
#include <cstdio>
#include <cctype>
namespace std {
struct istream {
#define M (1 << 24 | 3)
char buf[M], *ch = buf - 1;
inline istream() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif
fread(buf, 1, M, stdin);
}
inline istream& operator >> (int &x) {
while (isspace(*++ch));
for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
return *this;
}
#undef M
} cin;
struct ostream {
#define M (1 << 23 | 3)
char buf[M], *ch = buf - 1;
inline ostream& operator << (int x) {
if (!x) {
*++ch = '0';
return *this;
}
static int S[20], *top; top = S;
while (x) {
*++top = x % 10 ^ 48;
x /= 10;
}
for (; top != S; --top) *++ch = *top;
return *this;
}
inline ostream& operator << (const char x) { *++ch = x; return *this; }
inline ~ostream() {
#ifndef ONLINE_JUDGE
freopen("output.txt", "w", stdout);
#endif
fwrite(buf, 1, ch - buf + 1, stdout);
}
#undef M
} cout;
}
#define maxn 300010
int n, m;
bool notice[maxn];
namespace SgT {
bool tg[maxn << 2];
int V[maxn << 2];
void build(int rt, int l, int r) {
if (l == r) {
V[rt] = !notice[l];
return ;
}
int mid = l + r >> 1;
build(rt << 1, l, mid), build(rt << 1 | 1, mid + 1, r);
V[rt] = V[rt << 1] + V[rt << 1 | 1];
}
int L, R;
inline void pushdown(int rt) {
V[rt << 1] = V[rt << 1 | 1] = 0;
tg[rt << 1] = tg[rt << 1 | 1] = true;
tg[rt] = false;
}
void __modify(const int rt, const int l, const int r) {
if (L <= l && R >= r) {
V[rt] = 0;
tg[rt] = true;
return ;
}
if (tg[rt]) pushdown(rt);
const int mid = l + r >> 1;
if (L <= mid) __modify(rt << 1, l, mid);
if (R > mid) __modify(rt << 1 | 1, mid + 1, r);
V[rt] = V[rt << 1] + V[rt << 1 | 1];
}
void modify(const int __L, const int __R) {
L = __L, R = __R;
__modify(1, 1, n);
}
int res;
void __query(const int rt, const int l, const int r) {
if (L <= l && R >= r) {
res += V[rt];
return ;
}
if (tg[rt]) pushdown(rt);
const int mid = l + r >> 1;
if (L <= mid) __query(rt << 1, l, mid);
if (R > mid) __query(rt << 1 | 1, mid + 1, r);
}
int query(const int __L, const int __R) {
if (__L > __R) return 0;
L = __L, R = __R, res = 0;
__query(1, 1, n);
return res;
}
}
int main() {
std::cin >> n >> m;
for (int i = 1, k; i <= n; ++i) {
std::cin >> k;
for (int j = 0, x; j < k; ++j) std::cin >> x, notice[x] = true;
}
SgT::build(1, 1, n);
while (m --> 0) {
static int op, l, r, x;
std::cin >> op >> l >> r;
if (op == 1) std::cout << SgT::query(1, l - 1) + SgT::query(r + 1, n) << '\n';
else std::cin >> x, SgT::modify(l, r);
}
return 0;
}

浙公网安备 33010602011771号