[洛谷P3979]遥远的国度
题目大意:有一棵$n$个点的树,每个点有一个点权,有三种操作:
- $1\;x:$把根变成$x$
- $2\;u\;v\;x:$把路径$u->v$上的点权改为$x$
- $3\;x:$询问以$x$为根的子树中最小的点权
题解:树剖,发现换根操作比较困难,可以进行一波分类讨论(下面的$lca$以及子树都是在以$1$为根的情况下(其实任意一个固定的点均可)
- $root=x:$就是询问整棵树
- $lca(root,x)\not=x:$就是正常询问$x$的子树
- $lca(root,x)=x:$就是整棵树减去$root$所在的子树
然后步骤三的减去$root$所在的子树中的找这棵子树可以用倍增来求
卡点:步骤三中只查询了$x$的子树减去$root$子树
C++ Code:
#include <algorithm>
#include <cstdio>
#include <cctype>
namespace std {
struct istream {
#define M (1 << 24 | 3)
char buf[M], *ch = buf - 1;
inline istream() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif
fread(buf, 1, M, stdin);
}
inline istream& operator >> (int &x) {
while (isspace(*++ch));
for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
return *this;
}
#undef M
} cin;
struct ostream {
#define M (1 << 24 | 3)
char buf[M], *ch = buf - 1;
inline ostream& operator << (int x) {
if (!x) {
*++ch = '0';
return *this;
}
static int S[20], *top; top = S;
while (x) {
*++top = x % 10 ^ 48;
x /= 10;
}
for (; top != S; --top) *++ch = *top;
return *this;
}
inline ostream& operator << (const char x) {*++ch = x; return *this;}
inline ~ostream() {
#ifndef ONLINE_JUDGE
freopen("output.txt", "w", stdout);
#endif
fwrite(buf, 1, ch - buf + 1, stdout);
}
#undef M
} cout;
}
#define maxn 100010
const int inf = 0x7fffffff;
int head[maxn], cnt;
struct Edge {
int to, nxt;
} e[maxn << 1];
inline void addedge(int a, int b) {
e[++cnt] = (Edge) {b, head[a]}; head[a] = cnt;
e[++cnt] = (Edge) {a, head[b]}; head[b] = cnt;
}
int n, m;
int w[maxn], W[maxn];
namespace SgT {
int V[maxn << 2], tg[maxn << 2];
inline void pushdown(int rt) {
int &__tg = tg[rt];
V[rt << 1] = tg[rt << 1] = V[rt << 1 | 1] = tg[rt << 1 | 1] = __tg;
__tg = 0;
}
int L, R, num;
void build(int rt, int l, int r) {
if (l == r) {
V[rt] = W[l];
return ;
}
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
V[rt] = std::min(V[rt << 1], V[rt << 1 | 1]);
}
void __modify(int rt, int l, int r) {
if (L <= l && R >= r) {
V[rt] = tg[rt] = num;
return ;
}
int mid = l + r >> 1;
if (tg[rt]) pushdown(rt);
if (L <= mid) __modify(rt << 1, l, mid);
if (R > mid) __modify(rt << 1 | 1, mid + 1, r);
V[rt] = std::min(V[rt << 1], V[rt << 1 | 1]);
}
void modify(int __L, int __R, int __num) {
L = __L, R = __R, num = __num;
__modify(1, 1, n);
}
int ans;
void __query(int rt, int l, int r) {
if (L <= l && R >= r) {
ans = std::min(ans, V[rt]);
return ;
}
int mid = l + r >> 1;
if (tg[rt]) pushdown(rt);
if (L <= mid) __query(rt << 1, l, mid);
if (R > mid) __query(rt << 1 | 1, mid + 1, r);
}
int query(int __L, int __R) {
L = __L, R = __R;
ans = inf;
__query(1, 1, n);
return ans;
}
}
int root;
int fa[maxn], sz[maxn], dfn[maxn], idx;
int son[maxn], top[maxn], dep[maxn];
namespace BZ {
#define M 17
int fa[maxn][M + 1];
inline void init(int u) {
*fa[u] = ::fa[u];
for (int i = 1; i <= M; i++) fa[u][i] = fa[fa[u][i - 1]][i - 1];
}
inline int get_son(int x, int y) {
for (int i = M; ~i; i--) if (dep[fa[x][i]] > dep[y]) x = fa[x][i];
return x;
}
#undef M
}
using BZ::get_son;
void dfs1(int u) {
BZ::init(u);
sz[u] = 1;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa[u]) {
fa[v] = u;
dep[v] = dep[u] + 1;
dfs1(v);
sz[u] += sz[v];
if (!son[u] || sz[v] > sz[son[u]]) son[u] = v;
}
}
}
void dfs2(int u) {
dfn[u] = ++idx;
int v = son[u];
if (v) top[v] = top[u], dfs2(v);
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa[u] && v != son[u]) {
top[v] = v;
dfs2(v);
}
}
}
inline int LCA(int x, int y) {
if (x == y) return x;
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) std::swap(x, y);
x = fa[top[x]];
}
return dep[x] > dep[y] ? y : x;
}
void modify(int x, int y, int z) {
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) std::swap(x, y);
SgT::modify(dfn[top[x]], dfn[x], z);
x = fa[top[x]];
}
if (dep[x] > dep[y]) std::swap(x, y);
SgT::modify(dfn[x], dfn[y], z);
}
inline int query(int x) {
if (root == x) return SgT::query(1, n);
if (LCA(x, root) != x) return SgT::query(dfn[x], dfn[x] + sz[x] - 1);
const int S = get_son(root, x), l = dfn[S], r = dfn[S] + sz[S] - 1;
int ans = inf;
if (1 < l) ans = SgT::query(1, l - 1);
if (r < n) ans = std::min(ans, SgT::query(r + 1, n));
return ans;
}
int main() {
std::cin >> n >> m;
for (int i = 1, a, b; i < n; i++) {
std::cin >> a >> b;
addedge(a, b);
}
dfs1(1);
dfs2(top[1] = 1);
for (int i = 1; i <= n; i++) std::cin >> w[i];
for (int i = 1; i <= n; i++) W[dfn[i]] = w[i];
SgT::build(1, 1, n);
std::cin >> root;
while (m --> 0) {
int op, u, v, x;
std::cin >> op >> u;
switch (op) {
case 1:
root = u;
break;
case 2:
std::cin >> v >> x;
modify(u, v, x);
break;
case 3:
std::cout << query(u) << '\n';
}
}
return 0;
}

浙公网安备 33010602011771号