玩转 ZooKeeper之分布式锁

上一篇已经给出了选举leader执行任务的案例,接下来将领导者选举例子改成分布式锁(Distributed Lock)的实现方式。 模拟一个高并发扣减库存的场景:多个节点同时抢购同一商品(库存=100),使用 ZooKeeper 分布式锁确保同一时刻只有一个节点能扣库存,避免超卖。

核心区别回顾:

  • 领导者选举:全局只有一个 Leader 长期持有,一直执行任务。
  • 分布式锁:谁需要操作资源就去抢锁用完立即释放,其他节点可以继续抢。
distributed-lock-service/
├── pom.xml
├── src/
│   └── main/
│       ├── java/
│       │   └── com/example/
│       │       ├── DistributedLock.java  // 分布式锁核心
│       │       ├── InventoryService.java // 库存扣减服务
│       │       └── App.java             // 主入口
│       └── resources/
│           └── application.properties

pom.xml(依赖同前,添加 Curator 简化实现,生产中推荐 Curator 而非原生 ZooKeeper API)

 1 <dependencies>
 2     <!-- ZooKeeper 原生客户端 -->
 3     <dependency>
 4         <groupId>org.apache.zookeeper</groupId>
 5         <artifactId>zookeeper</artifactId>
 6         <version>3.8.0</version>
 7     </dependency>
 8     <!-- Curator 框架(推荐!简化分布式锁、选举等) -->
 9     <dependency>
10         <groupId>org.apache.curator</groupId>
11         <artifactId>curator-recipes</artifactId>
12         <version>5.7.0</version>
13     </dependency>
14     <dependency>
15         <groupId>org.apache.curator</groupId>
16         <artifactId>curator-framework</artifactId>
17         <version>5.7.0</version>
18     </dependency>
19     <!-- SLF4J -->
20     <dependency>
21         <groupId>org.slf4j</groupId>
22         <artifactId>slf4j-simple</artifactId>
23         <version>1.7.36</version>
24     </dependency>
25 </dependencies>

1. 配置(application.properties)

1 zk.connectString=192.168.1.101:2181,192.168.1.102:2181,192.168.1.103:2181
2 zk.sessionTimeout=5000
3 zk.connectionTimeout=3000
4 
5 # 分布式锁根路径
6 lock.rootPath=/locks
7 # 具体锁路径(这里模拟商品库存锁)
8 lock.path=/locks/inventory/product-12345

2. 核心代码

DistributedLock.java(基于 Curator 的可重入公平分布式锁)

 1 package com.example;
 2 
 3 import org.apache.curator.framework.CuratorFramework;
 4 import org.apache.curator.framework.CuratorFrameworkFactory;
 5 import org.apache.curator.framework.recipes.locks.InterProcessMutex;
 6 import org.apache.curator.retry.ExponentialBackoffRetry;
 7 import org.slf4j.Logger;
 8 import org.slf4j.LoggerFactory;
 9 
10 import java.util.concurrent.TimeUnit;
11 
12 public class DistributedLock {
13     private static final Logger logger = LoggerFactory.getLogger(DistributedLock.class);
14 
15     private final CuratorFramework client;
16     private final InterProcessMutex lock;
17     private final String lockPath;
18 
19     public DistributedLock(String zkConnectString, int sessionTimeout, String lockPath) {
20         this.lockPath = lockPath;
21 
22         // Curator 客户端(带重试机制)
23         ExponentialBackoffRetry retryPolicy = new ExponentialBackoffRetry(1000, 3);
24         this.client = CuratorFrameworkFactory.newClient(zkConnectString, sessionTimeout, 3000, retryPolicy);
25         client.start();
26 
27         // 可重入公平分布式锁
28         this.lock = new InterProcessMutex(client, lockPath);
29     }
30 
31     /**
32      * 尝试获取锁,超时则返回 false
33      */
34     public boolean acquire(long timeout, TimeUnit unit) {
35         try {
36             boolean acquired = lock.acquire(timeout, unit);
37             if (acquired) {
38                 logger.info("Lock acquired: {}", lockPath);
39             } else {
40                 logger.warn("Failed to acquire lock within timeout: {}", lockPath);
41             }
42             return acquired;
43         } catch (Exception e) {
44             logger.error("Error acquiring lock", e);
45             return false;
46         }
47     }
48 
49     /**
50      * 释放锁
51      */
52     public void release() {
53         try {
54             if (lock.isAcquiredInThisProcess()) {
55                 lock.release();
56                 logger.info("Lock released: {}", lockPath);
57             }
58         } catch (Exception e) {
59             logger.error("Error releasing lock", e);
60         }
61     }
62 
63     public void close() {
64         client.close();
65     }
66 }

InventoryService.java(模拟库存扣减)

 1 package com.example;
 2 
 3 import org.slf4j.Logger;
 4 import org.slf4j.LoggerFactory;
 5 
 6 import java.util.concurrent.atomic.AtomicInteger;
 7 
 8 public class InventoryService {
 9     private static final Logger logger = LoggerFactory.getLogger(InventoryService.class);
10 
11     // 模拟库存(实际应从数据库读取)
12     private final AtomicInteger stock = new AtomicInteger(100);
13 
14     /**
15      * 扣减库存(模拟业务逻辑)
16      */
17     public void deductStock(int quantity) {
18         if (stock.get() < quantity) {
19             logger.warn("库存不足!当前库存: {}", stock.get());
20             return;
21         }
22 
23         // 模拟数据库操作耗时
24         try {
25             Thread.sleep(50); // 模拟网络延迟
26         } catch (InterruptedException e) {
27             Thread.currentThread().interrupt();
28         }
29 
30         int newStock = stock.addAndGet(-quantity);
31         logger.info("扣减成功!扣减数量: {},剩余库存: {}", quantity, newStock);
32     }
33 
34     public int getStock() {
35         return stock.get();
36     }
37 }

App.java(主入口:模拟 10 个并发请求抢锁)

 1 package com.example;
 2 
 3 import java.io.IOException;
 4 import java.util.Properties;
 5 import java.util.concurrent.ExecutorService;
 6 import java.util.concurrent.Executors;
 7 import java.util.concurrent.TimeUnit;
 8 
 9 public class App {
10     public static void main(String[] args) throws IOException, InterruptedException {
11         Properties props = new Properties();
12         props.load(App.class.getClassLoader().getResourceAsStream("application.properties"));
13 
14         String zkConnect = props.getProperty("zk.connectString");
15         int sessionTimeout = Integer.parseInt(props.getProperty("zk.sessionTimeout"));
16         String lockPath = props.getProperty("lock.path");
17 
18         InventoryService inventory = new InventoryService();
19         DistributedLock lock = new DistributedLock(zkConnect, sessionTimeout, lockPath);
20 
21         // 模拟 10 个并发请求(实际生产中来自不同服务实例或线程)
22         ExecutorService executor = Executors.newFixedThreadPool(10);
23         for (int i = 0; i < 10; i++) {
24             final int orderId = i + 1;
25             executor.submit(() -> {
26                 System.out.println("订单 " + orderId + " 开始尝试扣库存...");
27 
28                 // 尝试获取锁(超时 3 秒)
29                 if (lock.acquire(3, TimeUnit.SECONDS)) {
30                     try {
31                         // 临界区:扣库存
32                         inventory.deductStock(1);
33                     } finally {
34                         // 必须释放锁!
35                         lock.release();
36                     }
37                 } else {
38                     System.out.println("订单 " + orderId + " 获取锁超时,放弃本次扣减");
39                 }
40             });
41         }
42 
43         executor.shutdown();
44         executor.awaitTermination(30, TimeUnit.SECONDS);
45 
46         System.out.println("最终剩余库存: " + inventory.getStock());
47         lock.close();
48     }
49 }

部署方式(与领导者选举完全相同)

  • 3 台服务器(node1、node2、node3)
  • 安装 ZooKeeper 集群(同前)
  • 打包 JAR:mvn clean package
  • 每台服务器上传 JAR + application.properties
  • 启动脚本(start.sh)同前,但 node.id 不需要了(分布式锁不需要唯一 ID)
    nohup java -jar distributed-lock-service-1.0-SNAPSHOT.jar > service.log 2>&1 &
    • 运行方式:在任意一台或多台服务器上启动多个实例(或在同一台机器启动多个进程),模拟并发。
    • 验证:启动后观察日志,只有一个线程/进程能成功扣库存,其他线程要么等待要么超时。

日志示例(运行后可能的输出)

订单 1 开始尝试扣库存...
订单 2 开始尝试扣库存...
订单 3 开始尝试扣库存...
...
[INFO] Lock acquired: /locks/inventory/product-12345   // 订单1 抢到锁
[INFO] 扣减成功!扣减数量: 1,剩余库存: 99
[INFO] Lock released: /locks/inventory/product-12345
订单 4 开始尝试扣库存...
[INFO] Lock acquired: /locks/inventory/product-12345   // 订单4 抢到锁
[INFO] 扣减成功!扣减数量: 1,剩余库存: 98
[INFO] Lock released: /locks/inventory/product-12345
...
最终剩余库存: 90   // 扣了 10 次,库存从 100 -> 90,无超卖

与领导者选举的对比总结

方面领导者选举(前例)分布式锁(本例)
日志出现频率 选举只在启动或 Leader 宕机时触发一次 每次业务请求都可能触发抢锁/释放日志(高频)
持有锁时间 长期(直到宕机) 极短(扣库存 50ms + 网络延迟)
日志关键词 "I am the Leader"、"I am Follower, watching" "Lock acquired"、"Lock released"、"Failed to acquire"
并发场景 所有节点只选一个干活 多个节点/线程并发抢同一把锁
释放时机 通常不释放(宕机自动释放) 必须在 finally 中释放,否则死锁
典型日志量 少(启动 + 宕机时) 多(每个订单都有一条 acquire + release)

 

生产环境建议

  • 用 Curator:原生 ZooKeeper 实现分布式锁容易出错(比如忘记释放、顺序节点管理复杂),Curator 的 InterProcessMutex 可解决。
  • 可重入性:Curator 锁默认支持可重入(同一线程可多次 acquire)。
  • 公平锁:默认公平(FIFO),避免饥饿。
  • 锁超时:业务设置合理超时,避免长时间阻塞。
  • 监控:监控 ZooKeeper 节点数、Watch 数量、锁竞争频率。

 

posted @ 2026-01-23 10:15  Marktowin  阅读(0)  评论(0)    收藏  举报