146.LRUCache

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

Follow up:
Could you do both operations in O(1) time complexity?

 

class Node {
int key;
int value;
Node pre;
Node next;

Node(int key, int value){
this.key = key;
this.value = value;
}
}

class LRUCache {
int capacity;
Map<Integer, Node> map = new HashMap();//key是Integer,value是Node
Node head = null;
Node end = null;

public LRUCache(int capacity) {
this.capacity = capacity;
}

public int get(int key) {
if(map.containsKey(key)) {
Node temp = map.get(key);
remove(temp);
setHead(temp);
return temp.value;
}
return -1;
}

public void put(int key, int value) {
if(map.containsKey(key)) {
Node old = map.get(key);
old.value = value;
remove(old);
setHead(old);
} else {
Node created = new Node(key,value);
if(map.size() >= capacity) {
map.remove(end.key);
remove(end);
}
setHead(created);
map.put(key,created);
}
}

public void remove(Node n) {
if(n.pre != null) {
n.pre.next = n.next;
} else {
head = n.next;
}

if(n.next != null) {
n.next.pre = n.pre;
} else {
end = n.pre;
}
}

public void setHead(Node n) {
n.next = head;
n.pre = null;
if(head != null)
head.pre = n;
head = n;
if(end == null)
end = head;
}
}
posted @ 2022-11-20 17:18  MarkLeeBYR  阅读(18)  评论(0)    收藏  举报