hdu1560DNA sequence(IDA*)
题目描述:
DNA sequence
Problem Description
The twenty-first century is a biology-technology developing century. We know that a gene is made of DNA. The nucleotide bases from which DNA is built are A(adenine), C(cytosine), G(guanine), and T(thymine). Finding the longest common subsequence between DNA/Protein sequences is one of the basic problems in modern computational molecular biology. But this problem is a little different. Given several DNA sequences, you are asked to make a shortest sequence from them so that each of the given sequence is the subsequence of it.
For example, given "ACGT","ATGC","CGTT" and "CAGT", you can make a sequence in the following way. It is the shortest but may be not the only one.
For example, given "ACGT","ATGC","CGTT" and "CAGT", you can make a sequence in the following way. It is the shortest but may be not the only one.
题目大意:有许多序列,要把他们横着排列起来,相同的元素可以排在一列,求最终排列的最少长度
思路:咱们最终排列的长度不知道多长,然后排列的先后顺序也不是很清楚,如果单纯dfs,很可能超时/爆栈,
这时候就需要用到高级的玩意儿,迭代加深搜索,我们可以预设一个搜索的排列长度,我们就再这个长度下
遍历所有情况,如果都不满足就继续加大深度,不怕爆栈而且也不会一条路走到黑,需要注意的是那个用来回溯
的数组一定要再dfs里面定义(别问我怎么知道的...),具体可以看代码注释
AC代码:
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 100; const int inf = 0x3f3f3f3f; string c = "ACGT"; string a[maxn]; int pos[10],n; int getlast() {//所有字符串还没有放置长度的最大值,即剩余需要的step的最小可能值 int ans = 0; for (int i = 0; i < n; i++) { ans = max(ans, int(a[i].size()) - pos[i]); } return ans; } int depth; bool dfs(int step) { int last = getlast(); if (step + last>depth)return false;//剩余需要放的长度+已放置了的长度>预设的depth,A*剪枝 if (!last)return true;//如果没有剩余的需要放了,满足要求 int tmp[10];//别当成全局变量了... memcpy(tmp, pos, sizeof(pos)); for (int i = 0; i < 4; i++) {//该层放什么元素 bool f = 0; for (int j = 0; j < n; j++) { if (pos[j]<int(a[j].size())&&a[j][pos[j]] == c[i]) { //如果该字符串下一个放置的字符就是当前遍历的字符,就可以放置 f = 1; pos[j]++; } } if (f) {//如果该层可以放置 if (dfs(step + 1))return true; memcpy(pos, tmp, sizeof(tmp));//回溯 } } return false; } int main() { //freopen("test.txt", "r", stdin); int t; scanf("%d", &t); while (t--) { scanf("%d", &n); int maxlen = 0; for (int i = 0; i < n; i++) { cin >> a[i]; maxlen = max(maxlen, int(a[i].size())); pos[i] = 0; } depth = maxlen;//预设初始深度为最长的字符串 while (1) { if (dfs(0)) break; depth++; } printf("%d\n", depth); } return 0; } /* 1 4 ACGT ATGC CGTT CAGT */ /* 8 */