上一页 1 ··· 20 21 22 23 24 25 26 27 28 ··· 36 下一页
摘要: Zhang D., Zhang H., Tang J., Hua X. and Sun Q. Causal Intervention for Weakly-Supervised Semantic Segmentation. NIPS, 2020. 概 这篇文章从因果关系的角度剖析如何提升弱监督语义分 阅读全文
posted @ 2021-04-06 18:18 馒头and花卷 阅读(917) 评论(0) 推荐(1)
摘要: Judea Pearl. Direct and indirect effects. In Proceedings of the 17th conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers 阅读全文
posted @ 2021-04-03 21:26 馒头and花卷 阅读(711) 评论(0) 推荐(0)
摘要: Hern$'{a}$n M. and Robins J. Causal Inference: What If. Neal B. Introduction to Causal Inference. graph LR A(A) --> Y(Y) graph LR L(L) -->A(A) --> Y(Y 阅读全文
posted @ 2021-03-31 20:04 馒头and花卷 阅读(307) 评论(0) 推荐(0)
摘要: Hern$'$n M. and Robins J. Causal Inference: What If. 初次提到the target trial在 page 37. 本章提到的direct causal effect感觉还是挺重要的, 就是感觉讲得太少了. 22.1 The target tria 阅读全文
posted @ 2021-03-30 15:39 馒头and花卷 阅读(189) 评论(0) 推荐(0)
摘要: Hern$'$n M. and Robins J. Causal Inference: What If. 这一章介绍了如何估计time-varying 下的causal effect. 21.1 The g-formula for time-varying treatments 求静态的$\math 阅读全文
posted @ 2021-03-30 09:44 馒头and花卷 阅读(161) 评论(0) 推荐(0)
摘要: Kingma D., Salimans T., Jozefowicz R., Chen X., Sutskever I. and Welling M. Improved Variational Inference with Inverse Autoregressive Flow. NIPS, 201 阅读全文
posted @ 2021-03-29 08:29 馒头and花卷 阅读(248) 评论(2) 推荐(0)
摘要: Tomczak J. and Welling M. Improving Variational Auto-Encoders using Householder Flow. NIPS workshop: Bayesian Deep Learning, 2016. 概 本文介绍了一种Normalizin 阅读全文
posted @ 2021-03-28 17:55 馒头and花卷 阅读(158) 评论(0) 推荐(0)
摘要: Germain M., Gregor K., Murray I. and Larochelle H. MADE: Masked Autoencoder for Distribution Estimation. ICML, 2015. 概 考虑 \[ \hat{x} = f(x) \in \mathb 阅读全文
posted @ 2021-03-27 20:18 馒头and花卷 阅读(632) 评论(0) 推荐(0)
摘要: Rezende D., Mohamed S. Variational Inference with Normalizing Flow. ICML, 2015. 概 VAE的先验分布很重要, 但是后验分布也很重要, 我们常常假设$q_{\phi}(z|x)$满足一个高斯分布, 这就大大限制了近似后验分 阅读全文
posted @ 2021-03-26 18:17 馒头and花卷 阅读(635) 评论(0) 推荐(0)
摘要: Hern$'$n M. and Robins J. Causal Inference: What If. 在介绍如何估计causal effect之前, 需要介绍一个treatment-confounder feedback 的概念, 由于这种情况的存在, 导致原先的一些估计方法失效. 20.1 T 阅读全文
posted @ 2021-03-25 18:28 馒头and花卷 阅读(118) 评论(0) 推荐(0)
摘要: Tomczak J. & Welling M. VAE with a VampPrior. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2018. 概 这篇文章提出了一种新的"多模态 阅读全文
posted @ 2021-03-19 18:21 馒头and花卷 阅读(240) 评论(0) 推荐(0)
摘要: Hoffman M. & Johnson M. ELBO surgery: yet another way to carve up the variational evidence lower bound. NIPS, 2016. 概 这篇文章主要介绍了一种ELBO一种新的改写, 以及可以从中获得的 阅读全文
posted @ 2021-03-19 17:24 馒头and花卷 阅读(244) 评论(0) 推荐(0)
摘要: Nazabal A., Olmos P., Ghahramani Z. and Valera I. Handing incomplete heterogeneous data using VAEs. Pattern Recognition, 2020, 107: 107501. 概 这篇文章利用VA 阅读全文
posted @ 2021-03-15 15:59 馒头and花卷 阅读(227) 评论(0) 推荐(0)
摘要: Hern$'$n M. and Robins J. Causal Inference: What If. 这一章讲一种新的方法: propensity scores. 15.1 Outcome regression 在满足条件可交换性下, \[ \mathbb{E} [Y^{a=1, c=0}|L= 阅读全文
posted @ 2021-03-14 20:14 馒头and花卷 阅读(156) 评论(0) 推荐(0)
摘要: Hern$'$n M. and Robins J. Causal Inference: What If. 前面已经介绍过了Standardization 和 IP weighting, 这里在介绍另外一种方法: G-estimation. 14.1 The causal question revis 阅读全文
posted @ 2021-03-14 17:39 馒头and花卷 阅读(424) 评论(0) 推荐(0)
摘要: Hern$'$n M. and Robins J. Causal Inference: What If. 这一节来讲怎么结合standardization. 13.1 Standardization as an alternative to IP weighting \[ \sum_l \mathb 阅读全文
posted @ 2021-03-11 11:30 馒头and花卷 阅读(162) 评论(0) 推荐(0)
摘要: Hern$'$n M. and Robins J. Causal Inference: What If. 这一章介绍如何结合IP weighting 和 参数模型. 12.1 The causal question 12.2 Estimating IP weights via modeling 我们 阅读全文
posted @ 2021-03-11 10:36 馒头and花卷 阅读(184) 评论(0) 推荐(0)
摘要: Hern$'$n M. and Robins J. Causal Inference: What If. 前10章介绍了一些基本概念, 从这一章开始, 将通过模型进一步分析. 11.1 Data cannot speak for themselves 我们要估计$\mathbb[Y|A=a]$, 但 阅读全文
posted @ 2021-03-07 19:52 馒头and花卷 阅读(74) 评论(0) 推荐(0)
摘要: Hern$'$n M. and Robins J. Causal Inference: What If. 在之前, 一直假设样本数量足够大, 从而没有随机因素的影响(即把以个体看成一亿或者更多个体的集合). 但是这种假设在实际中显然是不合理的, 往往我们只有少量的数据. 10.1 Identific 阅读全文
posted @ 2021-03-07 18:04 馒头and花卷 阅读(104) 评论(0) 推荐(0)
摘要: Hern$'$n M. and Robins J. Causal Inference: What If. 已经介绍过两个bias: confounding和selection, 这里介绍第三个, measurement bias. 这个measurement bias 不是指样本数目过少导致的误差, 阅读全文
posted @ 2021-03-04 20:37 馒头and花卷 阅读(212) 评论(0) 推荐(0)
上一页 1 ··· 20 21 22 23 24 25 26 27 28 ··· 36 下一页