Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
概
作者改进了PGD攻击方法, 并糅合了不同种类的攻击方法于一体, 使得AA的估计更为有效可靠. 特别是不需要调参.
主要内容

Auto-PGD
Auto-PGD, 其最大的改进的地方就是不需要调节参数(其实作者自己调得比较好啦). 普通的PGD:
其中\(P\)是投影算子, \(\eta\) 是学习率, \(f\)是损失函数.
Momentum
注: 作者选择 \(\alpha=0.75\)
Step Size
首先确定总的迭代次数\(N_{iter}\), 然后确定一些检查的结点\(w_0=0, w_1, \cdots, w_n\), 在每一个检查结点检查如下条件
-
\(\sum_{i={w_{i-1}}}^{w_{i}-1} 1_{f(x^{(i+1)}> f(x^{(i)}))}< \rho \cdot (w_j - w_{j-1})\);
-
\(\eta^{w_{j-1}}\equiv \eta^{w_j}\) and \(f_{max}^{(w_{j-1})}\equiv f_{max}^{(w_j)}.\)
其中\(f_{max}^{(k)}\)是前\(k\)个结点前的最高的函数值, 若其中条件之一满足, 则对之后的迭代的学习率减半, 即
注: 学习率\(\eta^{(0)}=2\epsilon\).
- 条件1是为了检查这一阶段的迭代是否有效(即损失是否升高的次数), 这里作者选择\(\rho=0.75\);
- 条件二如果成立了, 说明这一阶段相较于之前的阶段并没有提升, 所以需要减半学习率.
注: 一旦学习率减半了, 作者会令\(x^{(w_j+1)}:=x_{max}\), 从最好的结果处restart.
剩下一个问题是, 如何选择\(w_i\), 作者采取如下方案
损失函数
一般来说, 大家用的是交叉熵, 即
其梯度为
若\(p_y\)比较接近于\(1\), 也就是说分类的置信度比较高, 则会导致梯度消失, 而置信度可以单纯通过\(h=\alpha g\)来提高, 即这个损失对scale是敏感的. 替代的损失使用DLR损失
其中\(\pi_i\)是按照从大到小的一个序. 这个损失就能避免scale的影响, 同时还有一个target版本
AutoAttack
AutoAttack糅合了不同的攻击方法:
- \(\mathrm{APGD_{CE}}\)
- \(\mathrm{APGD_{DLR}}\)
- \(\mathrm{FAB}\)
- \(\mathrm{Square \: Attack}\): black-box

浙公网安备 33010602011771号