跟着Leo机器学习:sklearn之Stochastic Gradient Descent

一个很有趣的个人博客,不信你来撩 fangzengye.com



sklearn框架

在这里插入图片描述

函数导图

在这里插入图片描述

1.5.1. Classification

from sklearn.linear_model import SGDClassifier
X = [[0., 0.], [1., 1.]]
y = [0, 1]
clf = SGDClassifier(loss="hinge", penalty="l2", max_iter=5)
clf.fit(X, y)
clf.predict([[2., 2.]])
clf.coef_
clf = SGDClassifier(loss="log", max_iter=5).fit(X, y)
clf.predict_proba([[1., 1.]])

1.5.2. Regression

参数更改:

loss=“squared_loss”: Ordinary least squares,
loss=“huber”: Huber loss for robust regression,
loss=“epsilon_insensitive”: linear Support Vector Regression.

posted @ 2020-02-24 11:34  开源的Boy  阅读(122)  评论(0)    收藏  举报