跟着Leo机器学习:sklearn之Stochastic Gradient Descent
一个很有趣的个人博客,不信你来撩 fangzengye.com
sklearn框架

函数导图

1.5.1. Classification
from sklearn.linear_model import SGDClassifier
X = [[0., 0.], [1., 1.]]
y = [0, 1]
clf = SGDClassifier(loss="hinge", penalty="l2", max_iter=5)
clf.fit(X, y)
clf.predict([[2., 2.]])
clf.coef_
clf = SGDClassifier(loss="log", max_iter=5).fit(X, y)
clf.predict_proba([[1., 1.]])
1.5.2. Regression
参数更改:
loss=“squared_loss”: Ordinary least squares,
loss=“huber”: Huber loss for robust regression,
loss=“epsilon_insensitive”: linear Support Vector Regression.
我的个人博客fangzengye.com, 欢迎来撩哦!
原文博主: 热衷开源的宝藏Boy
版权声明: 自由转载-非商用-禁止演绎-保持署名| CC BY-NC-ND 3.0
浙公网安备 33010602011771号