跟着Leo机器学习:sklearn之 Gaussian Processes
一个很有趣的个人博客,不信你来撩 fangzengye.com
1.7. Gaussian Processes
sklearn 框架

函数导图

1.7.1. Gaussian Process Regression (GPR)
from sklearn.datasets import make_friedman2 from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel X, y = make_friedman2(n_samples=500, noise=0, random_state=0) kernel = DotProduct() + WhiteKernel() gpr = GaussianProcessRegressor(kernel=kernel, random_state=0).fit(X, y) gpr.score(X, y)
gpr.predict(X[:2,:], return_std=True)
源地址
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor
1.7.3. Gaussian Process Classification (GPC)
类包
sklearn.gaussian_process.GaussianProcessClassifier(kernel=None, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None, multi_class='one_vs_rest', n_jobs=None)[source]
from sklearn.datasets import load_iris from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF X, y = load_iris(return_X_y=True) kernel = 1.0 * RBF(1.0) gpc = GaussianProcessClassifier(kernel=kernel, random_state=0).fit(X, y) gpc.score(X, y)
gpc.predict_proba(X[:2,:])
我的个人博客fangzengye.com, 欢迎来撩哦!
原文博主: 热衷开源的宝藏Boy
版权声明: 自由转载-非商用-禁止演绎-保持署名| CC BY-NC-ND 3.0
浙公网安备 33010602011771号