LaTex语法笔记
一个很有趣的个人博客,不信你来撩 fangzengye.com
上标命令:^{}
下标命令:_{}
如果角标为单个字符,可以不使用花括号;否则必须使用花括号。
分式命令:\frac{分子}{分母}
根式:
二次根式命令:\sqrt{表达式}
N次根式命令:\sqrt[n]{表达式}
求和命令:\sum_{k=1}^nf(x)
求和位置:右上和右下标正常表示,在求和符号下端和上端用\limits
\sum _k^m
∑
k
\sum_k
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.04971em; vertical-align: -0.29971em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position: relative; top: -5e-06em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.186398em;"><span class="" style="top: -2.40029em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right: 0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.29971em;"><span class=""></span></span></span></span></span></span></span></span></span></span></p>
\sum \limits _k^m
∑
k
m
\sum \limits _k^m
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 2.35351em; vertical-align: -1.00211em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.3514em;"><span class="" style="top: -2.09789em; margin-left: 0em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right: 0.03148em;">k</span></span></span><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class=""><span class="mop op-symbol small-op">∑</span></span></span><span class="" style="top: -3.95em; margin-left: 0em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 1.00211em;"><span class=""></span></span></span></span></span></span></span></span></span></p>
积分命令:\int_a^bf(x)
上划线命令: \overline{公式}
下划线命令:\underline{公式}
上花括弧命令:\overbrace{公式}{说明}
下花括弧命令:\underbrace{公式}_{说明}
帽子符号\hat{a} \check{a} \breve{a} \tilde{a} \bar{a} \vec{a} \acute{a} \grave{a} \mathring{a} \dot{a} \ddot{a}
矩阵
$$
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix} \tag{1}
$$
带花括号矩阵
$$
\left\{
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right\} \tag{2}
$$
带中括号的矩阵
$$
\left[
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right] \tag{3}
$$
简约写法:
中括号
$$
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
$$
花括号
$$
\begin{Bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{Bmatrix} \tag{5}
$$
tag()是右侧公式代号
带省略号矩阵
\cdots ⋯
\ddots ⋱
\vdots ⋮
$$
\left[
\begin{matrix}
1 & 2 & \cdots & 4 \\
7 & 6 & \cdots & 5 \\
\vdots & \vdots & \ddots & \vdots \\
8 & 9 & \cdots & 0 \\
\end{matrix}
\right]
$$`
结果:
[
1
2
⋯
4
7
6
⋯
5
⋮
⋮
⋱
⋮
8
9
⋯
0
]
\left[ \begin{matrix} 1 & 2 & \cdots & 4 \\ 7 & 6 & \cdots & 5 \\ \vdots & \vdots & \ddots & \vdots \\ 8 & 9 & \cdots & 0 \\ \end{matrix} \right]
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 5.46em; vertical-align: -2.48em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 2.95301em;"><span class="" style="top: -1.34999em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎣</span></span></span><span class="" style="top: -2.50499em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎢</span></span></span><span class="" style="top: -3.10599em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎢</span></span></span><span class="" style="top: -3.70699em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎢</span></span></span><span class="" style="top: -4.95301em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 2.45003em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 2.98em;"><span class="" style="top: -5.8275em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord">1</span></span></span><span class="" style="top: -4.6275em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord">7</span></span></span><span class="" style="top: -2.7675em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width: 0em; border-top-width: 1.5em; bottom: 0em;"></span></span></span></span><span class="" style="top: -1.5675em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord">8</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 2.48em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 2.98em;"><span class="" style="top: -5.8275em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord">2</span></span></span><span class="" style="top: -4.6275em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord">6</span></span></span><span class="" style="top: -2.7675em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width: 0em; border-top-width: 1.5em; bottom: 0em;"></span></span></span></span><span class="" style="top: -1.5675em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord">9</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 2.48em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 2.98em;"><span class="" style="top: -5.64em;"><span class="pstrut" style="height: 3.5em;"></span><span class="mord"><span class="minner">⋯</span></span></span><span class="" style="top: -4.44em;"><span class="pstrut" style="height: 3.5em;"></span><span class="mord"><span class="minner">⋯</span></span></span><span class="" style="top: -2.58em;"><span class="pstrut" style="height: 3.5em;"></span><span class="mord"><span class="minner">⋱</span></span></span><span class="" style="top: -1.38em;"><span class="pstrut" style="height: 3.5em;"></span><span class="mord"><span class="minner">⋯</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 2.48em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 2.98em;"><span class="" style="top: -5.8275em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord">4</span></span></span><span class="" style="top: -4.6275em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord">5</span></span></span><span class="" style="top: -2.7675em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord"><span class="mord">⋮</span><span class="mord rule" style="border-right-width: 0em; border-top-width: 1.5em; bottom: 0em;"></span></span></span></span><span class="" style="top: -1.5675em;"><span class="pstrut" style="height: 3.6875em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 2.48em;"><span class=""></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 2.95301em;"><span class="" style="top: -1.34999em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎦</span></span></span><span class="" style="top: -2.50499em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎥</span></span></span><span class="" style="top: -3.10599em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎥</span></span></span><span class="" style="top: -3.70699em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎥</span></span></span><span class="" style="top: -4.95301em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 2.45003em;"><span class=""></span></span></span></span></span></span></span></span></span></span></span></span></p>
增广矩阵
$$
\left[
\begin{array}{cc|c}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}
\right] \tag{7}
$$
[
1
2
3
4
5
6
]
(7)
\left[ \begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right] \tag{7}
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 2.40003em; vertical-align: -0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.45em;"><span class="" style="top: -3.61em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">1</span></span></span><span class="" style="top: -2.41em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.95em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.45em;"><span class="" style="top: -3.61em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">2</span></span></span><span class="" style="top: -2.41em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">5</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.95em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="vertical-separator" style="height: 2.4em; vertical-align: -0.95em;"></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.45em;"><span class="" style="top: -3.61em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">3</span></span></span><span class="" style="top: -2.41em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">6</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.95em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size3">]</span></span></span></span><span class="tag"><span class="strut" style="height: 2.40003em; vertical-align: -0.95003em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">7</span></span><span class="mord">)</span></span></span></span></span></span></span><br> 偏导符号<br> \partial<br> 求导符号<br> \mathrm{d} x<br> 点形式的求导符号:\dot x 和 \ddot y(有几个点就用几个d)<br> 全微分算子:\nabla</p>
希腊字母
| 小写 | 大写 | 语法 |
|---|---|---|
| αα | AA | \alpha |
| ββ | BB | \beta |
| γγ | ΓΓ | \gamma |
| δδ | ΔΔ | \delta |
| ϵϵ | EE | \epsilon |
| ζζ | ZZ | \zeta |
| νν | NN | \nu |
| ξξ | ΞΞ | \xi |
| οο | OO | \omicron |
| ππ | ΠΠ | \pi |
| ρρ | PP | \rho |
| σσ | ΣΣ | \sigma |
| ηη | HH | \eta |
| θθ | ΘΘ | \theta |
| ιι | II | \iota |
| κκ | KK | \kappa |
| λλ | ΛΛ | \lambda |
| μμ | MM | \mu |
| ττ | TT | \tau |
| υυ | ΥΥ | \upsilon |
| ϕϕ | ΦΦ | \phi |
| χχ | XX | \chi |
| ψψ | ΨΨ | \psi |
| ωω | ΩΩ | \omega |
| η | Η | \eta |
特殊符号


















参考文章:
https://www.jianshu.com/p/8aa646fad1c5
https://blog.csdn.net/lanchunhui/article/details/49819445
https://blog.csdn.net/ying_xu/article/details/51240291
我的个人博客fangzengye.com, 欢迎来撩哦!
原文博主: 热衷开源的宝藏Boy
版权声明: 自由转载-非商用-禁止演绎-保持署名| CC BY-NC-ND 3.0
浙公网安备 33010602011771号