【KMP】Number Sequence

KMP算法

KMP的基处题目,数字数组的KMP算法应用。

主要是next[]数组的构造,next[]存储的是字符的当前字串,与子串前字符匹配的字符数。

移动位数 = 已匹配的字符数 - 对应的部分匹配值

 

Problem Description

Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.

Input

The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].

Output

For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.

Sample Input

2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1

Sample Output

6
-1

Source

HDU 2007-Spring Programming Contest
 1 #include<stdio.h>
 2 int a[1000001],b[10001],next[10001];
 3 void getnext(int m){
 4     int i=1,j=0;
 5     next[1]=0;
 6     while(i<m){
 7         if(j==0||b[i]==b[j]){
 8             i++; j++; next[i]=j;
 9         }
10         else j=next[j];
11     }
12 }
13 
14 void getk(int n,int m){
15     int i=1,j=1;
16     while(i<=n&&j<=m){
17         if(j==0||a[i]==b[j]){i++; j++;}
18         else j=next[j];
19     }
20     if(j>m) printf("%d\n",i-m);
21     else printf("-1\n");
22 }
23 
24 int main()
25 {
26     int t,n,m,i,j;
27     scanf("%d",&t);
28     while(t--){
29         scanf("%d%d",&n,&m);
30         for(i=1;i<=n;i++) scanf("%d",&a[i]);
31         for(i=1;i<=m;i++) scanf("%d",&b[i]);
32         getnext(m);
33         getk(n,m);
34     }
35     return 0;
36 }
View Code

 

 

posted on 2015-01-30 22:53  0Kelvin  阅读(171)  评论(0编辑  收藏  举报

导航