pytorch seq2seq闲聊机器人加入attention机制
attention.py
"""
实现attention
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import config
class Attention(nn.Module):
def __init__(self,method="general"):
super(Attention,self).__init__()
assert method in ["dot","general","concat"],"attention method error"
self.method = method
if method == "general":
self.W = nn.Linear(config.chatbot_encoder_hidden_size*2,config.chatbot_encoder_hidden_size*2,bias=False)
if method == "concat":
self.W = nn.Linear(config.chatbot_decoder_hidden_size*4,config.chatbot_decoder_hidden_size*2,bias=False)
self.V = nn.Linear(config.chatbot_decoder_hidden_size*2,1,bias=False)
def forward(self,decoder_hidden,encoder_outputs):
if self.method == "dot":
return self.dot_score(decoder_hidden,encoder_outputs)
elif self.method == "general":
return self.general_socre(decoder_hidden,encoder_outputs)
elif self.method == "concat":
return self.concat_socre(decoder_hidden,encoder_outputs)
def dot_score(self,decoder_hidden,encoder_outputs):
"""H_t^T * H_s
:param decoder_hidden:[1,batch_size,128*2] --->[batch_size,128*2,1]
:param encoder_outputs:[batch_size,encoder_max_len,128*2] --->[batch_size,encoder_max_len,128*2]
:return:attention_weight:[batch_size,encoder_max_len]
"""
decoder_hidden_viewed = decoder_hidden.squeeze(0).unsqueeze(-1) #[batch_size,128*2,1]
attention_weight = torch.bmm(encoder_outputs,decoder_hidden_viewed).squeeze(-1)
return F.softmax(attention_weight,dim=-1)
def general_socre(self,decoder_hidden,encoder_outputs):
"""
H_t^T *W* H_s
:param decoder_hidden:[1,batch_size,128*2]-->[batch_size,decode_hidden_size] *[decoder_hidden_size,encoder_hidden_size]--->[batch_size,encoder_hidden_size]
:param encoder_outputs:[batch_size,encoder_max_len,128*2]
:return:[batch_size,encoder_max_len]
"""
decoder_hidden_processed =self.W(decoder_hidden.squeeze(0)).unsqueeze(-1) #[batch_size,encoder_hidden_size*2,1]
attention_weight = torch.bmm(encoder_outputs, decoder_hidden_processed).squeeze(-1)
return F.softmax(attention_weight, dim=-1)
def concat_socre(self,decoder_hidden,encoder_outputs):
"""
V*tanh(W[H_t,H_s])
:param decoder_hidden:[1,batch_size,128*2]
:param encoder_outputs:[batch_size,encoder_max_len,128*2]
:return:[batch_size,encoder_max_len]
"""
#1. decoder_hidden:[batch_size,128*2] ----> [batch_size,encoder_max_len,128*2]
# encoder_max_len 个[batch_size,128*2] -->[encoder_max_len,bathc_size,128*2] -->transpose--->[]
encoder_max_len = encoder_outputs.size(1)
batch_size = encoder_outputs.size(0)
decoder_hidden_repeated = decoder_hidden.squeeze(0).repeat(encoder_max_len,1,1).transpose(0,1) #[batch_size,max_len,128*2]
h_cated = torch.cat([decoder_hidden_repeated,encoder_outputs],dim=-1).view([batch_size*encoder_max_len,-1]) #[batch_size*max_len,128*4]
attention_weight = self.V(F.tanh(self.W(h_cated))).view([batch_size,encoder_max_len]) #[batch_size*max_len,1]
return F.softmax(attention_weight,dim=-1)
decoder.py
"""
实现解码器
"""
import torch.nn as nn
import config
import torch
import torch.nn.functional as F
import numpy as np
import random
from chatbot.attention import Attention
class Decoder(nn.Module):
def __init__(self):
super(Decoder,self).__init__()
self.embedding = nn.Embedding(num_embeddings=len(config.target_ws),
embedding_dim=config.chatbot_decoder_embedding_dim,
padding_idx=config.target_ws.PAD)
#需要的hidden_state形状:[1,batch_size,64]
self.gru = nn.GRU(input_size=config.chatbot_decoder_embedding_dim,
hidden_size=config.chatbot_decoder_hidden_size,
num_layers=config.chatbot_decoder_number_layer,
bidirectional=False,
batch_first=True,
dropout=config.chatbot_decoder_dropout)
#假如encoder的hidden_size=64,num_layer=1 encoder_hidden :[2,batch_sizee,64]
self.fc = nn.Linear(config.chatbot_decoder_hidden_size,len(config.target_ws))
self.attn = Attention(method="general")
self.fc_attn = nn.Linear(config.chatbot_decoder_hidden_size * 2, config.chatbot_decoder_hidden_size, bias=False)
def forward(self, encoder_hidden,target,encoder_outputs):
# print("target size:",target.size())
#第一个时间步的输入的hidden_state
decoder_hidden = encoder_hidden #[1,batch_size,128*2]
#第一个时间步的输入的input
batch_size = encoder_hidden.size(1)
decoder_input = torch.LongTensor([[config.target_ws.SOS]]*batch_size).to(config.device) #[batch_size,1]
# print("decoder_input:",decoder_input.size())
#使用全为0的数组保存数据,[batch_size,max_len,vocab_size]
decoder_outputs = torch.zeros([batch_size,config.chatbot_target_max_len,len(config.target_ws)]).to(config.device)
if random.random()>0.5: #teacher_forcing机制
for t in range(config.chatbot_target_max_len):
decoder_output_t,decoder_hidden = self.forward_step(decoder_input,decoder_hidden,encoder_outputs)
decoder_outputs[:,t,:] = decoder_output_t
#获取当前时间步的预测值
value,index = decoder_output_t.max(dim=-1)
decoder_input = index.unsqueeze(-1) #[batch_size,1]
# print("decoder_input:",decoder_input.size())
else:
for t in range(config.chatbot_target_max_len):
decoder_output_t, decoder_hidden = self.forward_step(decoder_input, decoder_hidden,encoder_outputs)
decoder_outputs[:, t, :] = decoder_output_t
#把真实值作为下一步的输入
decoder_input = target[:,t].unsqueeze(-1)
# print("decoder_input size:",decoder_input.size())
return decoder_outputs,decoder_hidden
def forward_step(self,decoder_input,decoder_hidden,encoder_outputs):
'''
计算一个时间步的结果
:param decoder_input: [batch_size,1]
:param decoder_hidden: [1,batch_size,128*2]
:return:
'''
decoder_input_embeded = self.embedding(decoder_input)
# print("decoder_input_embeded:",decoder_input_embeded.size())
#out:[batch_size,1,128*2]
#decoder_hidden :[1,bathc_size,128*2]
# print(decoder_hidden.size())
out,decoder_hidden = self.gru(decoder_input_embeded,decoder_hidden)
##### 开始attention ############
### 1. 计算attention weight
attn_weight = self.attn(decoder_hidden,encoder_outputs) #[batch_size,1,encoder_max_len]
### 2. 计算context vector
#encoder_ouputs :[batch_size,encoder_max_len,128*2]
context_vector = torch.bmm(attn_weight.unsqueeze(1),encoder_outputs).squeeze(1) #[batch_szie,128*2]
### 3. 计算 attention的结果
#[batch_size,128*2] #context_vector:[batch_size,128*2] --> 128*4
#attention_result = [batch_size,128*4] --->[batch_size,128*2]
attention_result = torch.tanh(self.fc_attn(torch.cat([context_vector,out.squeeze(1)],dim=-1)))
# attention_result = torch.tanh(torch.cat([context_vector,out.squeeze(1)],dim=-1))
#### attenion 结束
# print("decoder_hidden size:",decoder_hidden.size())
#out :【batch_size,1,hidden_size】
# out_squeezed = out.squeeze(dim=1) #去掉为1的维度
out_fc = F.log_softmax(self.fc(attention_result),dim=-1) #[bathc_size,vocab_size]
# print("out_fc:",out_fc.size())
return out_fc,decoder_hidden
def evaluate(self,encoder_hidden,encoder_outputs):
# 第一个时间步的输入的hidden_state
decoder_hidden = encoder_hidden # [1,batch_size,128*2]
# 第一个时间步的输入的input
batch_size = encoder_hidden.size(1)
decoder_input = torch.LongTensor([[config.target_ws.SOS]] * batch_size).to(config.device) # [batch_size,1]
# print("decoder_input:",decoder_input.size())
# 使用全为0的数组保存数据,[batch_size,max_len,vocab_size]
decoder_outputs = torch.zeros([batch_size, config.chatbot_target_max_len, len(config.target_ws)]).to(
config.device)
predict_result = []
for t in range(config.chatbot_target_max_len):
decoder_output_t, decoder_hidden = self.forward_step(decoder_input, decoder_hidden,encoder_outputs)
decoder_outputs[:, t, :] = decoder_output_t
# 获取当前时间步的预测值
value, index = decoder_output_t.max(dim=-1)
predict_result.append(index.cpu().detach().numpy()) #[[batch],[batch]...]
decoder_input = index.unsqueeze(-1) # [batch_size,1]
# print("decoder_input:",decoder_input.size())
# predict_result.append(decoder_input)
#把结果转化为ndarray,每一行是一条预测结果
predict_result = np.array(predict_result).transpose()
return decoder_outputs, predict_result
seq2seq.py
"""
完成seq2seq模型
"""
import torch.nn as nn
from chatbot.encoder import Encoder
from chatbot.decoder import Decoder
class Seq2Seq(nn.Module):
def __init__(self):
super(Seq2Seq,self).__init__()
self.encoder = Encoder()
self.decoder = Decoder()
def forward(self, input,input_len,target):
encoder_outputs,encoder_hidden = self.encoder(input,input_len)
decoder_outputs,decoder_hidden = self.decoder(encoder_hidden,target,encoder_outputs)
return decoder_outputs
def evaluate(self,input,input_len):
encoder_outputs, encoder_hidden = self.encoder(input, input_len)
decoder_outputs, predict_result = self.decoder.evaluate(encoder_hidden,encoder_outputs)
return decoder_outputs,predict_result
多思考也是一种努力,做出正确的分析和选择,因为我们的时间和精力都有限,所以把时间花在更有价值的地方。

浙公网安备 33010602011771号