PyTorch 深度学习实践 第9讲:多分类问题(下)

1.代码:

import torch
from torchvision import transforms#图像处理
from torchvision import datasets
from torch.utils.data import DataLoader#为了构建Dataloader
import torch.nn.functional as F#为了使用relu激活函数
import torch.optim as optim#优化器的包

# 1.prepare dataset
#要使用dataset,dataloader所以要设置batch容量
#ToTensor讲原始图片转成图像张量(维度1->3,像素值属于【0,1】
#Normalize(均值,标准差)像素值切换成0,1分布

batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)

#2.Design Model
#构建网络,__init__函数中是线性变换层(输入,输出)
#__forward__函数,将线性变换的每一层结果用relu激活,注意最后一层l5不需要激活
#L5输出结果 利用nn.CrossEntropyLoss输出loss值

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784,512)
        self.l2 = torch.nn.Linear(512,256)
        self.l3 = torch.nn.Linear(256,128)
        self.l4 = torch.nn.Linear(128,64)
        self.l5 = torch.nn.Linear(64,10)
    
    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)#l5不激活,输出结果
    
model = Net()#实例化为model

#3.construct Loss and Optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.01, momentum=0.5)


#4.Train and  Test
def train(epoch):#封装train的一轮循环函数
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader,0):
        inputs, target = data#输入x,输出y
        optimizer.zero_grad()#清空过往梯度
        
        #forward + backward + updata
        outputs = model(inputs)#forward 计算y^
        loss = criterion(outputs, target)#(y^,y)计算损失值
        loss.backward()#反向传播,计算当前梯度
        optimizer.step()#根据梯度更新网络参数
        
        running_loss += loss.item()#累计相加的是loss拿出的值,而非构建计算图!
        if batch_idx % 300 ==299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1,running_loss / 300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():#以下不用计算梯度
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted  = torch.max(outputs.data, dim = 1)#输出数据,dim =1检索每行最大值,并输出下标
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set:%d %%' %(100 * correct / total))

#5.
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

[1, 300] loss: 2.194
[1, 600] loss: 0.784
[1, 900] loss: 0.396
Accuracy on test set:89 %
[2, 300] loss: 0.310
[2, 600] loss: 0.266
[2, 900] loss: 0.229
Accuracy on test set:93 %
[3, 300] loss: 0.181
[3, 600] loss: 0.166
[3, 900] loss: 0.160
Accuracy on test set:95 %
[4, 300] loss: 0.127
[4, 600] loss: 0.129
[4, 900] loss: 0.116
Accuracy on test set:96 %
[5, 300] loss: 0.098
[5, 600] loss: 0.097
[5, 900] loss: 0.093
Accuracy on test set:96 %
[6, 300] loss: 0.079
[6, 600] loss: 0.079
[6, 900] loss: 0.069
Accuracy on test set:96 %
[7, 300] loss: 0.057
[7, 600] loss: 0.063
[7, 900] loss: 0.063
Accuracy on test set:97 %
[8, 300] loss: 0.050
[8, 600] loss: 0.050
[8, 900] loss: 0.048
Accuracy on test set:97 %
[9, 300] loss: 0.040
[9, 600] loss: 0.040
[9, 900] loss: 0.042
Accuracy on test set:97 %
[10, 300] loss: 0.031
[10, 600] loss: 0.030
[10, 900] loss: 0.036
Accuracy on test set:97 %

2.代码图解

image

ToTensor():
  1. 单通道->多通道(维度转换:矩阵->张量)
  2. 像素值从(0,255)压缩到【0,1】

image

x.view():

参考一下其他小伙伴的优秀:
for batch_idx(或者i), data in enumerate(train_loader, 0): 理解

_, predicted = torch.max(outputs.data, 1)的理解

torch.sum(),dim=0,dim=1解析

posted @ 2022-08-11 18:00  Ling22  阅读(75)  评论(0)    收藏  举报