MapReduce编程
MapReduce
运行步骤:input=》split=》map=》shuffle=》reduce=》output
数据文件 =》分片记录1=》分片处理1=》按键分组按键排序键值对=》处理输出的键值对=》处理结果
分片记录2=》分片处理2
例子:单词计数原理
1.默认情况下,分片个数与数据块一致
2.一个分片对应一个Map
3.Map与Reduce读取与输入的数据均为键值对
4.Shuffle阶段能够按键值对数据进行分组,排序
WordCount
package demo;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//实例化Configuration,获取集群配置
Configuration conf = new Configuration();
//实例化Job,提交到集群的任务
Job job = Job.getInstance(conf);
job.setJarByClass(WordCount.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
//设置Map、Reduce输出键值对类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//输入路径
FileInputFormat.addInputPath(job, new Path(args[0]));
//输出路径
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.out.println(job.waitForCompletion(true)?0:1);
}
}
MyMapper
package demo;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
Text word= new Text();
IntWritable one = new IntWritable(1);
MyReducer
package demo;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
IntWritable counts = new IntWritable();
运行一个任务
hadoop jar /usr/local/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar wordcount /usr/root/a.txt /usr/root/wordcount01
Hadoop jar 本地代码 wordcount 要规划的文件 清洗过后的文件