数据挖掘_客户分析
1 import pandas as pd 2 3 datafile= 'D://CourseAssignment//AI//air_data.csv' # 航空原始数据,第一行为属性标签 4 resultfile = 'D://CourseAssignment//AI//explore.csv' # 数据探索结果表 5 6 # 读取原始数据,指定UTF-8编码(需要用文本编辑器将数据装换为UTF-8编码) 7 data = pd.read_csv(datafile, encoding = 'utf-8') 8 9 # 包括对数据的基本描述,percentiles参数是指定计算多少的分位数表(如1/4分位数、中位数等) 10 explore = data.describe(percentiles = [], include = 'all').T # T是转置,转置后更方便查阅 11 explore['null'] = len(data)-explore['count'] # describe()函数自动计算非空值数,需要手动计算空值数 12 13 explore = explore[['null', 'max', 'min']] 14 explore.columns = ['空值数', '最大值', '最小值'] # 表头重命名 15 ''' 16 这里只选取部分探索结果。 17 describe()函数自动计算的字段有count(非空值数)、unique(唯一值数)、top(频数最高者)、 18 freq(最高频数)、mean(平均值)、std(方差)、min(最小值)、50%(中位数)、max(最大值) 19 ''' 20 21 explore.to_csv(resultfile) # 导出结果
1 import pandas as pd 2 import matplotlib.pyplot as plt 3 4 datafile= 'D://CourseAssignment//AI//air_data.csv' # 航空原始数据,第一行为属性标签 5 6 # 读取原始数据,指定UTF-8编码(需要用文本编辑器将数据装换为UTF-8编码) 7 data = pd.read_csv(datafile, encoding = 'utf-8') 8 9 # 客户信息类别 10 # 提取会员入会年份 11 from datetime import datetime 12 ffp = data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d')) 13 ffp_year = ffp.map(lambda x : x.year) 14 # 绘制各年份会员入会人数直方图 15 fig = plt.figure(figsize = (8 ,5)) # 设置画布大小 16 plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示 17 plt.rcParams['axes.unicode_minus'] = False 18 plt.hist(ffp_year, bins='auto', color='#0504aa') 19 plt.xlabel('年份') 20 plt.ylabel('入会人数') 21 plt.title('各年份会员入会人数--number:3009') 22 plt.show() 23 plt.close
1 male = pd.value_counts(data['GENDER'])['男'] 2 female = pd.value_counts(data['GENDER'])['女'] 3 # 绘制会员性别比例饼图 4 fig = plt.figure(figsize = (7 ,4)) # 设置画布大小 5 plt.pie([ male, female], labels=['男','女'], colors=['lightskyblue', 'lightcoral'], 6 autopct='%1.1f%%') 7 plt.title('会员性别比例--number:3009') 8 plt.show() 9 plt.close
1 # 提取不同级别会员的人数 2 lv_four = pd.value_counts(data['FFP_TIER'])[4] 3 lv_five = pd.value_counts(data['FFP_TIER'])[5] 4 lv_six = pd.value_counts(data['FFP_TIER'])[6] 5 # 绘制会员各级别人数条形图 6 fig = plt.figure(figsize = (8 ,5)) # 设置画布大小 7 plt.bar(x=range(3), height=[lv_four,lv_five,lv_six], width=0.4, alpha=0.8, color='skyblue') 8 plt.xticks([index for index in range(3)], ['4','5','6']) 9 plt.xlabel('会员等级') 10 plt.ylabel('会员人数') 11 plt.title('会员各级别人数--number:3009') 12 plt.show() 13 plt.close()
1 # 提取会员年龄 2 age = data['AGE'].dropna() 3 age = age.astype('int64') 4 # 绘制会员年龄分布箱型图 5 fig = plt.figure(figsize = (5 ,10)) 6 plt.boxplot(age, 7 patch_artist=True, 8 labels = ['会员年龄'], # 设置x轴标题 9 boxprops = {'facecolor':'lightblue'}) # 设置填充颜色 10 plt.title('会员年龄分布箱线图--number:3009') 11 # 显示y坐标轴的底线 12 plt.grid(axis='y') 13 plt.show() 14 plt.close
# 乘机信息类别 lte = data['LAST_TO_END'] fc = data['FLIGHT_COUNT'] sks = data['SEG_KM_SUM'] # 绘制最后乘机至结束时长箱线图 fig = plt.figure(figsize = (5 ,8)) plt.boxplot(lte, patch_artist=True, labels = ['时长'], # 设置x轴标题 boxprops = {'facecolor':'lightblue'}) # 设置填充颜色 plt.title('会员最后乘机至结束时长分布箱线图--number:3009') # 显示y坐标轴的底线 plt.grid(axis='y') plt.show() plt.close
1 # 绘制客户飞行次数箱线图 2 fig = plt.figure(figsize = (5 ,8)) 3 plt.boxplot(fc, 4 patch_artist=True, 5 labels = ['飞行次数'], # 设置x轴标题 6 boxprops = {'facecolor':'lightblue'}) # 设置填充颜色 7 plt.title('会员飞行次数分布箱线图--number:3009') 8 # 显示y坐标轴的底线 9 plt.grid(axis='y') 10 plt.show() 11 plt.close
1 # 绘制客户总飞行公里数箱线图 2 fig = plt.figure(figsize = (5 ,10)) 3 plt.boxplot(sks, 4 patch_artist=True, 5 labels = ['总飞行公里数'], # 设置x轴标题 6 boxprops = {'facecolor':'lightblue'}) # 设置填充颜色 7 plt.title('客户总飞行公里数箱线图--number:3009') 8 # 显示y坐标轴的底线 9 plt.grid(axis='y') 10 plt.show() 11 plt.close
1 # 积分信息类别 2 # 提取会员积分兑换次数 3 ec = data['EXCHANGE_COUNT'] 4 # 绘制会员兑换积分次数直方图 5 fig = plt.figure(figsize = (8 ,5)) # 设置画布大小 6 plt.hist(ec, bins=5, color='#0504aa') 7 plt.xlabel('兑换次数') 8 plt.ylabel('会员人数') 9 plt.title('会员兑换积分次数分布直方图--number:3009') 10 plt.show() 11 plt.close
1 # 提取会员总累计积分 2 ps = data['Points_Sum'] 3 # 绘制会员总累计积分箱线图 4 fig = plt.figure(figsize = (5 ,8)) 5 plt.boxplot(ps, 6 patch_artist=True, 7 labels = ['总累计积分'], # 设置x轴标题 8 boxprops = {'facecolor':'lightblue'}) # 设置填充颜色 9 plt.title('客户总累计积分箱线图--number:3009') 10 # 显示y坐标轴的底线 11 plt.grid(axis='y') 12 plt.show() 13 plt.close
1 # 提取属性并合并为新数据集 2 data_corr = data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END', 3 'SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']] 4 age1 = data['AGE'].fillna(0) 5 data_corr['AGE'] = age1.astype('int64') 6 data_corr['ffp_year'] = ffp_year 7 8 # 计算相关性矩阵 9 dt_corr = data_corr.corr(method = 'pearson') 10 print('相关性矩阵为:\n',dt_corr) 11 12 # 绘制热力图 13 import seaborn as sns 14 plt.subplots(figsize=(10, 10)) # 设置画面大小 15 sns.heatmap(dt_corr, annot=True, vmax=1, square=True, cmap='Blues') 16 plt.title('热力图--number:3009') 17 plt.show() 18 plt.close
1 import numpy as np 2 import pandas as pd 3 4 datafile = 'D://CourseAssignment//AI//air_data.csv' # 航空原始数据路径 5 cleanedfile = 'D://CourseAssignment//AI//data_cleaned.csv' # 数据清洗后保存的文件路径 6 7 # 读取数据 8 airline_data = pd.read_csv(datafile,encoding = 'utf-8') 9 print('原始数据的形状为:',airline_data.shape) 10 11 # 去除票价为空的记录 12 airline_notnull = airline_data.loc[airline_data['SUM_YR_1'].notnull() & 13 airline_data['SUM_YR_2'].notnull(),:] 14 print('删除缺失记录后数据的形状为:',airline_notnull.shape) 15 16 # 只保留票价非零的,或者平均折扣率不为0且总飞行公里数大于0的记录。 17 index1 = airline_notnull['SUM_YR_1'] != 0 18 index2 = airline_notnull['SUM_YR_2'] != 0 19 index3 = (airline_notnull['SEG_KM_SUM']> 0) & (airline_notnull['avg_discount'] != 0) 20 index4 = airline_notnull['AGE'] > 100 # 去除年龄大于100的记录 21 airline = airline_notnull[(index1 | index2) & index3 & ~index4] 22 print('数据清洗后数据的形状为:',airline.shape) 23 24 airline.to_csv(cleanedfile) # 保存清洗后的数据
1 import pandas as pd 2 import numpy as np 3 4 # 读取数据清洗后的数据 5 cleanedfile = 'D://CourseAssignment//AI//data_cleaned.csv' # 数据清洗后保存的文件路径 6 airline = pd.read_csv(cleanedfile, encoding = 'utf-8') 7 # 选取需求属性 8 airline_selection = airline[['FFP_DATE','LOAD_TIME','LAST_TO_END', 9 'FLIGHT_COUNT','SEG_KM_SUM','avg_discount']] 10 print('筛选的属性前5行为:\n',airline_selection.head()) 11 12 13 14 # 代码7-8 15 16 # 构造属性L 17 L = pd.to_datetime(airline_selection['LOAD_TIME']) - \ 18 pd.to_datetime(airline_selection['FFP_DATE']) 19 L = L.astype('str').str.split().str[0] 20 L = L.astype('int')/30 21 22 # 合并属性 23 airline_features = pd.concat([L,airline_selection.iloc[:,2:]],axis = 1) 24 airline_features.columns = ['L','R','F','M','C'] 25 print('构建的LRFMC属性前5行为:\n',airline_features.head()) 26 27 # 数据标准化 28 from sklearn.preprocessing import StandardScaler 29 data = StandardScaler().fit_transform(airline_features) 30 np.savez('D://CourseAssignment//AI//airline_scale.npz',data) 31 print('标准化后LRFMC五个属性为:\n',data[:5,:])
1 import pandas as pd 2 import numpy as np 3 from sklearn.cluster import KMeans # 导入kmeans算法 4 5 # 读取标准化后的数据 6 airline_scale = np.load('D://CourseAssignment//AI//airline_scale.npz')['arr_0'] 7 k = 5 # 确定聚类中心数 8 9 # 构建模型,随机种子设为123 10 kmeans_model = KMeans(n_clusters = k,random_state=123) 11 fit_kmeans = kmeans_model.fit(airline_scale) # 模型训练 12 13 # 查看聚类结果 14 kmeans_cc = kmeans_model.cluster_centers_ # 聚类中心 15 print('各类聚类中心为:\n',kmeans_cc) 16 kmeans_labels = kmeans_model.labels_ # 样本的类别标签 17 print('各样本的类别标签为:\n',kmeans_labels) 18 r1 = pd.Series(kmeans_model.labels_).value_counts() # 统计不同类别样本的数目 19 print('最终每个类别的数目为:\n',r1) 20 # 输出聚类分群的结果 21 cluster_center = pd.DataFrame(kmeans_model.cluster_centers_,\ 22 columns = ['ZL','ZR','ZF','ZM','ZC']) # 将聚类中心放在数据框中 23 cluster_center.index = pd.DataFrame(kmeans_model.labels_ ).\ 24 drop_duplicates().iloc[:,0] # 将样本类别作为数据框索引 25 print(cluster_center) 26 27 28 # 代码7-10 29 30 #%matplotlib inline 31 import matplotlib.pyplot as plt 32 # 客户分群雷达图 33 labels = ['ZL','ZR','ZF','ZM','ZC'] 34 legen = ['客户群' + str(i + 1) for i in cluster_center.index] # 客户群命名,作为雷达图的图例 35 lstype = ['-','--',(0, (3, 5, 1, 5, 1, 5)),':','-.'] 36 kinds = list(cluster_center.iloc[:, 0]) 37 # 由于雷达图要保证数据闭合,因此再添加L列,并转换为 np.ndarray 38 cluster_center = pd.concat([cluster_center, cluster_center[['ZL']]], axis=1) 39 centers = np.array(cluster_center.iloc[:, 0:]) 40 41 # 分割圆周长,并让其闭合 42 n = len(labels) 43 angle = np.linspace(0, 2 * np.pi, n, endpoint=False) 44 angle = np.concatenate((angle, [angle[0]])) 45 labels = np.concatenate((labels, [labels[0]])) 46 # 绘图 47 fig = plt.figure(figsize = (8,6)) 48 ax = fig.add_subplot(111, polar=True) # 以极坐标的形式绘制图形 49 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 50 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 51 # 画线 52 for i in range(len(kinds)): 53 ax.p