python数据挖掘—绘制热力图,相关系数分析,基于GM11和ARIMA的财政收入预测
01绘制热力图
import numpy as np import pandas as pd inputfile = 'D://CourseAssignment//AI//DataPredict//data.csv' data = pd.read_csv(inputfile) #describe statistical analysis description = [data.min(), data.max(), data.mean(), data.std()] #calculate the min, max, mean, std description = pd.DataFrame(description, index = ['Min', 'Max', 'Mean', 'STD']).T #keep two decimals print('describe the result of statisticl analysis : \n', np.round(description, 2)) #correlation analysis corr = data.corr(method = 'pearson') print('correlation coefficient martix: \n', np.round(corr, 2)) #draw thermodynamic diagram import matplotlib.pyplot as plt import seaborn as sns plt.rcParams['font.sans-serif'] = ['SimHei'] plt.subplots(figsize=(10, 10)) # set the size of canvas sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Reds") plt.title('correlation thermodynamic diagram') plt.show() plt.close
02相关系数
1 from sklearn.linear_model import Lasso 2 lasso = Lasso(1000) #use function Lasso, set 1000 3 lasso.fit(data.iloc[:,0:13], data['y']) 4 5 print('相关系数为: ', np.round(lasso.coef_, 5)) #output result 6 print('相关系数非0个数为:',np.sum(lasso.coef_ != 0)) 7 8 mask = lasso.coef_ != 0; 9 print('相关系数是否为0:', mask) 10 mask = np.append(mask, True) 11 print('相关系数是否为0:', mask) 12 13 outputFile = r'D:\CourseAssignment\AI\new_reg_data3.csv' #输出数据文件 14 new_reg_data = data.iloc[:, mask] #返回相关系数非零的?? 15 new_reg_data.to_csv(outputFile) #存储数据 16 print('输出数据的维度为:', new_reg_data.shape) #查看数据
03基于GM11的财政预测
1 #-*- coding: utf-8 -*- 2 3 import sys 4 sys.path.append('D://CourseAssignment//AI//DataPredict//code') # 设置路径 5 import numpy as np 6 import pandas as pd 7 from GM11 import GM11 # 引入自编的灰色预测函数 8 9 inputfile1 = r'D://CourseAssignment//AI//DataPredict//new_reg_data.csv' # 输入的数据文件 10 inputfile2 = r'D://CourseAssignment//AI//DataPredict//data.csv' # 输入的数据文件 11 new_reg_data = pd.read_csv(inputfile1, index_col = 0,header =0) # 读取经过特征选择后的数据 12 data = pd.read_csv(inputfile2, header=0) # 读取总的数据 13 new_reg_data.index = range(1994, 2014) 14 new_reg_data.loc[2014] = None 15 new_reg_data.loc[2015] = None 16 new_reg_data.loc[2016] = None 17 l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] 18 for i in l: 19 f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0] 20 new_reg_data.loc[2014,i] = f(len(new_reg_data)-1) # 2014年预测结果 21 new_reg_data.loc[2015,i] = f(len(new_reg_data)) # 2015年预测结果 22 new_reg_data.loc[2016, i] = f(len(new_reg_data)+1) # 2016年预测结果 23 new_reg_data[i] = new_reg_data[i].round(2) # 保留两位小数 24 25 26 y = list(data['y'].values) # 提取财政收入列,合并至新数据框中 27 y.extend([np.nan,np.nan,np.nan]) 28 new_reg_data['y'] = y 29 outputfile = 'D://CourseAssignment//AI//DataPredict//new_reg_data_GM11.xls' # 灰色预测后保存的路径 30 new_reg_data.to_excel(outputfile) # 结果输出 31 print('预测结果为:\n',new_reg_data.loc[2014:2016,]) # 预测结果展示 32 33 34 import matplotlib.pyplot as plt 35 from sklearn.svm import LinearSVR 36 37 inputfile = 'D://CourseAssignment//AI//DataPredict//new_reg_data_GM11.xls' # 灰色预测后保存的路径 38 data = pd.read_excel(inputfile, index_col=0, header=0) # 读取数据 39 feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] # 属性所在列 40 print('***************分隔*****************') 41 #data.index = range(1994, 2014) 42 data_train = data.loc[range(1994,2014)].copy() # 取2014年前的数据建模 43 data_mean = data_train.mean() 44 data_std = data_train.std() 45 data_train = (data_train - data_mean)/data_std # 数据标准化 46 x_train = data_train[feature].values # 属性数据 47 y_train = data_train['y'].values # 标签数据 48 linearsvr = LinearSVR() # 调用LinearSVR()函数 49 linearsvr.fit(x_train,y_train) 50 x = ((data[feature] - data_mean[feature])/data_std[feature]).values # 预测,并还原结果。 51 data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y'] 52 outputfile = 'D://CourseAssignment//AI//DataPredict//new_reg_data_GM11_revenue.xls' # SVR预测后保存的结果 53 data.to_excel(outputfile) 54 55 print('真实值与预测值分别为:\n',data[['y','y_pred']]) 56 57 fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*']) # 画出预测结果图 58 plt.title('3009----predict') 59 plt.show()

04基于ARIMA的财政预测
1 import pandas as pd 2 # 参数初始化 3 import statsmodels.tsa.arima_model 4 5 discfile = r'D://CourseAssignment//AI//DataPredict//data.csv' 6 forecastnum = 3 7 8 # 读取数据,指定日期列为指标,pandas自动将“日期”列识别为Datetime格式 9 data = pd.read_csv(discfile) 10 x = 'y' 11 data = data[[x]] 12 13 """" 14 # 时序图 15 import matplotlib.pyplot as plt 16 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 17 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 18 x = [ 19 '1994','1995','1996','1997','1998','1999','2000' 20 ,'2001','2002','2003','2004','2005','2006','2007','2008','2009', 21 '2010','2011','2012','2013'] 22 y = data['y'] 23 plt.figure(figsize=(14,9)) 24 plt.plot(x,y,color='green') 25 plt.show() 26 """ 27 28 # 自相关图 29 from statsmodels.graphics.tsaplots import plot_acf 30 plot_acf(data).show() 31 32 # 平稳性检测 33 from statsmodels.tsa.stattools import adfuller as ADF 34 print('原始序列的ADF检验结果为:', ADF(data['y'])) 35 # 返回值依次为adf、pvalue、usedlag、nobs、critical values、icbest、regresults、resstore 36 37 # 差分后的结果 38 D_data = data.diff().dropna() 39 D_data.columns = ['收入差分'] 40 D_data.plot() # 时序图 41 import matplotlib.pyplot as plt 42 plt.show() 43 plot_acf(D_data).show() # 自相关图 44 from statsmodels.graphics.tsaplots import plot_pacf 45 plot_pacf(D_data, lags=8).show() # 偏自相关图 46 print('差分序列的ADF检验结果为:', ADF(D_data['收入差分'])) # 平稳性检测 47 48 # 白噪声检验 49 from statsmodels.stats.diagnostic import acorr_ljungbox 50 print('差分序列的白噪声检验结果为:', acorr_ljungbox(D_data, lags=1)) # 返回统计量和p值 51 52 from statsmodels.tsa.arima.model import ARIMA 53 54 # 定阶 55 data['y'] = data['y'].astype('float64') 56 pmax = int(len(D_data)/10) # 一般阶数不超过length/10 57 qmax = int(len(D_data)/10) # 一般阶数不超过length/10 58 bic_matrix = [] # BIC矩阵 59 for p in range(pmax+1): 60 tmp = [] 61 for q in range(qmax+1): 62 try: # 存在部分报错,所以用try来跳过报错。 63 tmp.append(ARIMA(data,order= (p,1,q)).fit().bic) 64 except: 65 tmp.append(None) 66 bic_matrix.append(tmp) 67 bic_matrix = pd.DataFrame(bic_matrix) # 从中可以找出最小值 68 p,q = bic_matrix.stack().idxmin() # 先用stack展平,然后用idxmin找出最小值位置。 69 print('BIC最小的p值和q值为:%s、%s' %(p,q)) 70 model = ARIMA(data, order=(p,1,q)).fit() # 建立ARIMA(0, 1, 1)模型 71 print('模型报告为:\n', model.summary()) 72 print('预测未来3年,其预测结果、标准误差、置信区间如下:\n', model.forecast(3)) 73 74 #原数据cxcel文件列名规范 75 data.to_excel('D://CourseAssignment//AI//DataPredict//ARIMA_data//new_reg_data_ARIMA_origin.xls') 76 columns = ['year', 'y'] 77 originfile = 'D://CourseAssignment//AI//DataPredict//ARIMA_data//new_reg_data_ARIMA_origin.xls' 78 origindata = pd.read_excel(originfile, header = None, names = columns) 79 origindata = origindata.drop(labels=0) 80 origindata.to_excel('D://CourseAssignment//AI//DataPredict//ARIMA_data//new_reg_data_ARIMA_origin.xls') 81 82 83 #提取预测后的数值到excel 84 model.forecast(3).to_excel('D://CourseAssignment//AI//DataPredict//ARIMA_data//new_reg_data_ARIMA_temp.xls') 85 tempfile = r'D://CourseAssignment//AI//DataPredict//ARIMA_data//new_reg_data_ARIMA_temp.xls' 86 tempdata = pd.read_excel(tempfile) 87 tempdata.rename(columns={'predicted_mean':'y'}, inplace=True) 88 tempdata.to_excel('D://CourseAssignment//AI//DataPredict//ARIMA_data//new_reg_data_ARIMA_temp.xls') 89 tempdata.rename(columns={'Unnamed: 0':'year'}, inplace=True) 90 tempdata.to_excel('D://CourseAssignment//AI//DataPredict//ARIMA_data//new_reg_data_ARIMA_temp.xls') 91 92 93 #合并excel 94 df1 = pd.read_excel('D://CourseAssignment//AI//DataPredict//ARIMA_data//new_reg_data_ARIMA_origin.xls') 95 df2 = pd.read_excel('D://CourseAssignment//AI//DataPredict//ARIMA_data//new_reg_data_ARIMA_temp.xls') 96 result = pd.concat([df1, df2]) 97 print(result) 98 result.to_excel('D://CourseAssignment//AI//DataPredict//new_reg_data_ARIMA_result.xls') 99 100 # 时序图 101 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 102 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 103 plt.figure(figsize=(10,4)) 104 x = [ 105 '1994','1995','1996','1997','1998','1999','2000' 106 ,'2001','2002','2003','2004','2005','2006','2007','2008','2009', 107 '2010','2011','2012','2013','2014','2015','2016'] 108 y = result['y'] 109 x_pred = ['2014','2015','2016'] 110 y_pred = tempdata['y'] 111 plt.plot(x, y, color = 'green', label = '现有数据', marker='o') 112 plt.plot(x_pred, y_pred, color = 'red', label = '预测数据', marker='s') 113 plt.legend() 114 plt.title('3009---ARIMA预测') 115 plt.show()