加载中...

Pytorch深入学习阶段二(三)

Pytorch学习阶段二(三)

一、真实的torch.nn

转化数据类型:

x_train, y_train, x_valid, y_valid = map(
    torch.tensor, (x_train, y_train, x_valid, y_valid)
)

torch.nn

  • module:创建可调用对象,包含权重等状态,并且可以更新权重
  • Parameter:即需要被训练的权重,设置requires_grad来设置更新
  • functional:一个包含激活函数,损失函数等的模型

torch.optim:包含SGD等许多优化器,在后向传播的过程中更新权重

Dataset__len____getitem__重写后为神经网络加载数据

DataLoader:返回一个迭代器,可用于迭代数据

二、TensorBoard使用

初始化:

from torch.utils.tensorboard import SummaryWriter

# default `log_dir` is "runs" - we'll be more specific here
writer = SummaryWriter('runs/fashion_mnist_experiment_1')

添加图片:

# write to tensorboard
writer.add_image('four_fashion_mnist_images', img_grid)

run:

tensorboard --logdir=runs --port=8080

在中控台点击: http://localhost:8080或者浏览器浏览此网页

添加可视化网络:

writer.add_graph(net, images)

intermediate/../../_static/img/tensorboard_model_viz.png

添加图表:

# ...log the running loss
            writer.add_scalar('training loss',
                            running_loss / 1000,
                            epoch * len(trainloader) + i)

intermediate/../../_static/img/tensorboard_scalar_runs.png

posted @ 2022-04-07 14:57  Lee_Roc  阅读(83)  评论(0)    收藏  举报