信道容量

信道容量及其一般算法

当信道确定时,\(I(X;Y)​\)\(p(a_i)(i = 1,...,r)​\)的函数,这是一个多元函数,并且

\[\sum_{i=1}^rp(a_i) = 1 \]

根据求多元函数极值的方法,我们构建辅助函数

\[F[p(a_1), ... , p(a_r), \lambda] = I(X;Y) - \lambda[\sum_{i=1}^r p(a_i) - 1] \]

则要使得\(I(X;Y)\)在条件\(\sum\limits_{i=1}^rp(a_i) = 1\)下取得极值,需要满足

\[\begin{aligned} &\cfrac{\partial F}{\partial p(a_i)} = \cfrac{\partial \{I(X;Y) - \lambda[\sum\limits_{i = 1}^{r}p(a_i) - 1]\}}{\partial p(a_i)} = 0 \\ &\sum_{i=1}^rp(a_i) = 1 \end{aligned} \]

经过复杂的数学计算,我们得到

\[\begin{aligned} &\sum_{j=1}^{s}p(b_j/a_i)\ln\cfrac{p(b_j/a_i)}{p(b_j)} = \lambda + 1\\ &\sum_{i=1}^rp(a_i) = 1 \end{aligned} \]

对第一个式子乘以\(p(a_i)\)并对\(i\)求和

\[\sum_{i = 1}^{r}\sum_{j=1}^{s}p(a_i)p(b_j/a_i)\ln\cfrac{p(b_j/a_i)}{p(b_j)} = \sum_{i=1}^{r}p(a_i)(\lambda + 1) \]

上式的左边即为信道容量\(C\)的表达式,所以

\[C = \lambda + 1 \]

所以我们又可以得到

\[\sum_{j=1}^{s}p(b_j/a_i)\ln\cfrac{p(b_j/a_i)}{p(b_j)} = C \]

进行化简可以得到

\[\sum_{j = 1}^{s}p(b_j/a_i)[C + \ln p(b_j)] = \sum_{j = 1}^{s}p(b_j/a_i)\ln p(b_j/a_i) \]

\[\beta_j = C + \ln p(b_j) \]

得到

\[\sum_{j = 1}^{s}p(b_j/a_i)\beta_j = \sum_{j = 1}^{s}p(b_j/a_i)\ln p(b_j/a_i) \]

这是一个关于\(\beta_j\)的方程组,可以求出\(\beta_j\),根据\(C\)\(\beta_j\)的关系,我们得到

\[C = \ln\{\sum_{j = 1}^{s}e^{\beta_j}\} \]

根据求得的\(C\)\(\beta_j\),代入

\[\beta_j = C + \ln p(b_j) \]

可以求得\(p(b_j)\),然后根据

\[p(b_j) = \sum_{i = 1}^{r}p(a_i)p(b_j/a_i) \]

可以解出\(p(a_i)\),即得到了使\(I(X;Y)\)最大的信源概率分布。

几种无噪信道的信道容量

\(H(X|Y) = 0\)

该种信道的特点是,其信道概率矩阵每列只有一个非零的数,如下

\[\begin{array}{*{20}{l}} {\quad \quad \quad \qquad \quad {b_1}\qquad \quad {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {b_2}\qquad \qquad {b_3}\qquad \qquad {b_4}\qquad \qquad {b_5}\qquad \qquad {b_6}\qquad \qquad {b_7}}\\ {[P] = \begin{array}{*{20}{c}} {{a_1}}\\ {{a_2}}\\ {{a_3}}\\ {{a_4}} \end{array}\left( {\begin{array}{*{20}{c}} {p({b_1}/{a_1})}&{p({b_2}/{a_1})}&0&0&0&0&0\\ 0&0&{p({b_3}/{a_2})}&{p({b_4}/{a_2})}&{p({b_5}/{a_2})}&0&0\\ 0&0&0&0&0&{p({b_6}/{a_3})}&0\\ 0&0&0&0&0&0&{p({b_7}/{a_4})} \end{array}} \right)} \end{array} \]

对应的模型为

此时

\[I(X;Y) = H(X) - H(X|Y) = H(X) \]

根据信道容量的定义,则

\[C = max\{I(X;Y)\} = max\{H(X)\} = \log r \]

当信源概率分布等概时取等号。

\(H(Y|X) = 0\)

该信道的特点是,其信道概率矩阵只由\(0\)\(1​\)组成

\[\begin{array}{l} \qquad \quad \quad\,\,{\mkern 1mu} {\mkern 1mu} {b_1}\,\,\,\, {b_2}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu}\,\, {b_3}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu}\, {b_4}\\ P = \begin{array}{*{20}{c}} {{a_1}}\\ {{a_2}}\\ {{a_3}}\\ {{a_4}}\\ {{a_5}}\\ {{a_6}}\\ {{a_7}} \end{array}\left( {\begin{array}{*{20}{c}} 1&0&0&0\\ 0&0&1&0\\ 0&1&0&0\\ 0&0&0&1\\ 1&0&0&0\\ 0&0&1&0\\ 0&1&0&0 \end{array}} \right) \end{array} \]

对应的模型为

此时

\[I(X;Y) = H(Y) - H(Y|X) = H(Y) \]

\[C = max\{H(Y)\} = \log s \]

当输出变量\(Y\)等概分布时得到,那么信源\(X\)的分布是什么才能使输出\(Y\)等概分布呢? 其实匹配的信源并不是唯一的。

几种对称信道的信道容量

强对称信道

我们定义强对称信道的信道概率矩阵为

\[\begin{array}{l} \qquad\qquad\quad\quad{a_i}\quad\quad\quad{a_2} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu}\quad\,\, \cdots \qquad {a_r}\\ [P] = \begin{array}{*{20}{c}} {{a_1}}\\ {{a_2}}\\ \vdots \\ {{a_r}} \end{array}\left[ {\begin{array}{*{20}{c}} {(1 - \epsilon)}&{\cfrac{\epsilon}{{r - 1}}}& \cdots &{\cfrac{\epsilon}{{r - 1}}}\\ {\cfrac{\epsilon}{{r - 1}}}&{(1 - \epsilon)}& \cdots &{\cfrac{\epsilon}{{r - 1}}}\\ \vdots & \vdots & \cdots & \vdots \\ {\cfrac{\epsilon}{{r - 1}}}&{\cfrac{\epsilon}{{r - 1}}}& \cdots &{(1 - \epsilon)} \end{array}} \right] \end{array} \]

输入随机变量\(X\)和输出随机变量\(Y\)的符号数均为\(r\),每一个输入符号的总的错误传递概率为\(\epsilon​\)的强对称信道。它的信道容量的求法如下

\[\begin{aligned} H(Y|X) &= -\sum_{i=1}^{r}\sum_{j=1}^{r} p(a_i)p(a_j/a_i) \log p(a_j/a_i) \\ &= ... \\ &=H(\epsilon) + \epsilon \log(r-1) \end{aligned} \]

\[C = max\{I(X;Y)\} = max\{H(Y) - H(Y|X)\} = \log r - H(\epsilon) - \epsilon \log(r - 1) \]

当输出\(Y\)等概时取得等号,那个信源\(X\)什么分布会使得输出\(Y\)等概,答案是\(X\)等概,所以我们得到这么一个结论,对于强对称信道,当信源分布等概时,此时\(I(X;Y)\)取得最大值为

\[C = \log r - H(\epsilon) - \epsilon\log(r-1) \]

posted on 2019-05-30 20:00  LastKnight  阅读(1193)  评论(0编辑  收藏  举报