Day 6
P96 Q3 (1)
\[y'=\sqrt{1-x^2}-\frac{x^2}{\sqrt{1-x^2}}=\frac{1-2x^2}{\sqrt{1-x^2}}
\]
P96 Q3 (2)
\[y'=3(x^2-1)^2\cdot2x=6x(x^2-1)^2
\]
P96 Q3 (4)
\[y'=\frac1m-\frac m{x^2}+\frac1{\sqrt x}-\frac1{x^\frac32}
\]
P96 Q3 (17)
\[y'=e^{x+1}
\]
P96 Q3 (18)
\[y'=2^{\sin x}\ln2\cdot\cos x
\]
P96 Q3 (19)
\[\ln y=\sin x\cdot\ln x\\
\Rightarrow\frac{y'}y=\cos x\cdot\ln x+\frac{\sin x}x\\
\Rightarrow y'=x^{\sin x}\left(\cos x\ln x+\frac{\sin x}x\right)
\]
P96 Q3 (21)
\[y'=-e^{-x}\sin2x+2e^{-x}\cos2x=e^{-x}(2\cos2x-\sin2x)
\]
P99 Q1 (1)
\[\frac{\mathrm dy}{\mathrm dx}=\frac{\mathrm dy}{\mathrm dt}\cdot\frac{\mathrm dt}{\mathrm dx}=\frac{4\sin^3t\cos t}{-4\cos^3t\sin t}=-\tan^2t=-3
\]
P99 Q1 (2)
\[\frac{\mathrm dy}{\mathrm dx}=\frac{\mathrm dy}{\mathrm dt}\cdot\frac{\mathrm dt}{\mathrm dx}=\frac{-2}{(1+t)^2}\cdot(1+t)^2=-2
\]
P103 Q5 (3)
\[y=\frac1x+\frac1{1-x}\\
\Rightarrow y'=-\frac1{x^2}+\frac1{(1-x)^2}=\frac{2x-1}{x^2(1-x)^2}
\]
P109 Q2 (2)
\[y'=\ln x+1-1=\ln x
\]
P109 Q2 (4)
\[y'=\frac{1-x^2+2x^2}{(1-x^2)^2}=\frac{1+x^2}{(1-x^2)^2}
\]
P109 Q2 (6)
\[u=\sqrt{1-x^2}\Rightarrow u'=-\frac x{\sqrt{1-x^2}}\\
\Rightarrow y'=\arcsin'u\cdot u'=-\frac x{|x|\sqrt{1-x^2}}
\]
Day 5
P78 Q8 (1)
\[\lim_{x\to\frac\pi4}(\pi-x)\tan x=(\pi-\frac\pi4)\tan\frac\pi4=\frac{3\pi}4
\]
P78 Q8 (2)
\[\lim_{x\to1^+}\frac{x\sqrt{1+2x}-\sqrt{x^2-1}}{x+1}=\frac{\sqrt3-0}2=\frac{\sqrt3}2
\]
P78 Q9
若 \(f\) 在 \([a,b]\) 上连续,且满足 \(\exist x_1\in[a,b],~\mathrm{s.t.}~f(x_1)>0\) 且 \(\exist x_2\in[a,b],~\mathrm{s.t.}~f(x_2)<0\),则根据根的存在定理,在 \([x_1,x_2]\) 或 \([x_2,x_1]\) 上必有至少一个 \(f(x_0)=0\),与条件不符
P80 Q1 (1)
\[\lim_{x\to0}\frac{e^x\cos x+5}{1+x^2+\ln(1-x)}=\frac{1\cdot1+5}{1+0+0}=6
\]
P80 Q1 (4)
\[\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\sqrt x}}}{\sqrt{x+1}}=\lim_{x\to\infty}\frac{\sqrt{1+\sqrt\frac1x\cdot\sqrt{1+\sqrt\frac1x}}}{\sqrt{1+\sqrt\frac1x}}=\frac11=1
\]
P80 Q1 (5)
\[\lim_{x\to0}(1+\sin x)^{\cot x}=\lim_{x\to0}((1+\sin x)^{\frac1{\sin x}})^{\cos x}=e^1=e
\]
Day 4
P55 Q1 (2)
\[\lim_{x\to0}\frac{\sin x^3}{(\sin x)^2}=\lim_{x\to0}x\cdot\frac{\sin x^3}{x^3}\cdot\left(\frac{x}{\sin x}\right)^2=0
\]
P55 Q1 (4)
\[\lim_{x\to0}\frac{\tan x}x=\lim_{x\to0}\frac{\sin x}{x\cos x}=\lim_{x\to0}\frac1{\cos x}=1
\]
P55 Q1 (6)
\[\lim_{x\to0}\frac{\arctan x}x=\lim_{y\to0}\frac y{\tan y}=1
\]
P55 Q1 (8)
\[\lim_{x\to a}\frac{sin^2x-sin^2a}{x-a}=(sin^2x)'|_a=\sin2a
\]
P56 Q2 (1)
\[\lim_{x\to\infty}\left(1-\frac2x\right)^{-x}=\lim_{y\to\infty}\left(1+\frac1y\right)^{2y}=e^2
\]
P56 Q2 (3)
\[\lim_{x\to0}(1+\tan x)^{\cot x}=\lim_{y\to\infty}\left(1+\frac1y\right)^y=e
\]
P56 Q2 (5)
\[\lim_{x\to+\infty}\left(\frac{3x+2}{3x-1}\right)^{2x-1}=\lim_{y\to+\infty}\left(1+\frac1y\right)^{\frac23y-\frac13}=e^{\frac23}
\]
P63 Q5 (2)
\[\lim_{x\to0}\frac1{1+x}-(1-x)=\lim_{x\to0}\frac{x^2}{1+x}=\lim_{x\to0}x^2\\
\Rightarrow\alpha=2
\]
P63 Q5 (3)
\[\lim_{x\to0}\sqrt{1+\tan x}-\sqrt{1-\sin x}=\lim_{x\to0}\frac{\tan x+\sin x}{\sqrt{1+\tan x}+\sqrt{1-\sin x}}=\lim_{x\to0}x\\
\Rightarrow\alpha=1
\]
Day 3
P49 Q1 (2)
\[\lim_{x\to0}\frac{x^2-1}{2x^2-x-1}=\frac{\lim_{x\to0}x^2-1}{\lim_{x\to0}2x^2-x-1}=1
\]
P49 Q1 (4)
\[\lim_{x\to0}\frac{(x-1)^3+(1-3x)}{x^2+2x^3}=\lim_{x\to0}\frac{x^3-3x^2}{2x^3+x^2}=\lim_{x\to0}\frac{x-3}{2x+1}=\frac{\lim_{x\to0}x-3}{\lim_{x\to0}2x+1}=-3
\]
P49 Q1 (6)
\[\lim_{x\to4}\frac{\sqrt{1+2x}-3}{\sqrt x-2}=\lim_{x\to4}\frac{2(x-4)(\sqrt x+2)}{(x-4)\sqrt{1+2x}+3}=\lim_{x\to4}\frac{2(\sqrt x+2)}{\sqrt{1+2x}+3}=\frac{\lim_{x\to4}2(\sqrt x+2)}{\lim_{x\to4}\sqrt{1+2x}+3}=\frac43
\]
P49 Q1 (8)
\[\lim_{x\to+\infty}\frac{(3x+6)^{70}(8x-5)^{20}}{(5x-1)^{90}}=\lim_{x\to+\infty}\frac{(3x)^{70}(8x)^{20}}{(5x)^{90}}=\frac{3^{70}8^{20}}{5^{90}}
\]
P50 Q8 (2)
\[\lim_{x\to0^+}\frac{|x|}x\frac1{1+x^n}=\lim_{x\to0^+}\frac1{1+x^n}=\frac1{\lim_{x\to0^+}1+x^n}=1
\]
P50 Q8 (4)
\[\lim_{x\to0}\frac{\sqrt[n]{1+x}-1}{x}=\lim_{y\to1}\frac{y-1}{y^n-1}=\lim_{y\to1}\frac{y-1}{(y-1)\sum_{i=0}^{n-1}y^i}=\lim_{y\to1}\frac1{\sum_{i=0}^{n-1}y^i}=\frac1{\lim_{y\to1}\sum_{i=0}^{n-1}y^i}=\frac1n
\]
Day 2
P31 Q1 (1)
\[\lim_{n\to\infty}\frac{n^3+3n^2+1}{4n^3+2n+3}=\frac14+\lim_{n\to\infty}\frac{3n^2+1}{4n^3+2n+3}=\frac14\\
\]
P31 Q1 (3)
\[\begin{aligned}
\lim_{n\to\infty}\frac{(-2)^n+3^n}{(-2)^{n+1}+3^{n+1}}&=\lim_{n\to\infty}\frac{3^n(1+(-\frac23)^n)}{3^{n+1}(1+(-\frac23)^{n+1})}\\
&=\frac13\lim_{n\to\infty}\frac{1+(-\frac23)^n}{1+(-\frac23)^{n+1}}\\
&=\frac13\frac{\lim_{n\to\infty}1+(-\frac23)^n}{\lim_{n\to\infty}1+(-\frac23)^{n+1}}\\
&=\frac13
\end{aligned}
\]
P31 Q1 (5)
\[\lim_{n\to\infty}\sum_{i=1}^{10}i^{1/n}=\sum_{i=1}^{10}\lim_{n\to\infty}i^{1/n}=\sum_{i=1}^{10}i^{\lim_{n\to\infty}1/n}=\sum_{i=1}^{10}i^0=10
\]
P32 Q4 (2)
\[\lim_{n\to\infty}\prod_{i=1}^n2^{1/2^i}=\lim_{n\to\infty}2^{\sum_{i=1}^n1/2^i}=2^{\lim_{n\to\infty}\sum_{i=1}^n1/2^i}=2^1=2
\]
P32 Q4 (4)
\[\lim_{n\to\infty}\sqrt[n]{1-\frac1n}=\lim_{n\to\infty}\sqrt[n]{\frac{n-1}n}=\frac{\lim_{n\to\infty}\sqrt[n]{n-1}}{\lim_{n\to\infty}\sqrt[n]n}=\frac11=1
\]
P32 Q4 (6)
\[\lim_{n\to\infty}\sum_{i=1}^n(n^2)^{-1/2}\le\lim_{n\to\infty}\sum_{i=1}^n(n^2+i)^{-1/2}\le\lim_{n\to\infty}\sum_{i=1}^n(n^2+n)^{-1/2}\\
\lim_{n\to\infty}\sum_{i=1}^n(n^2)^{-1/2}=\lim_{n\to\infty}n\cdot n^{-1}=1\\
\lim_{n\to\infty}\sum_{i=1}^n(n^2+n)^{-1/2}=\lim_{n\to\infty}n^{1/2}\cdot(n+1)^{-1/2}=\lim_{n\to\infty}(1+1/n)^{-1/2}=1\\
\Rightarrow\lim_{n\to\infty}\sum_{i=1}^n(n^2+i)^{-1/2}=1
\]
P37 Q1 (3)
\[\lim_{n\to\infty}\left(1+\frac1{n+1}\right)^n=\lim_{n\to\infty}\frac{(1+1/n)^n}{1+1/n}=\frac{\lim_{n\to\infty}(1+1/n)^n}{\lim_{n\to\infty}1+1/n}=\frac e1=e
\]
P37 Q1 (4)
\[\lim_{n\to\infty}\left(1+\frac1{2n}\right)^n=\lim_{n\to\infty}\left(1+\frac1n\right)^{n/2}=\sqrt{\lim_{n\to\infty}\left(1+\frac1n\right)^n}=\sqrt e
\]
P37 Q1 (5)
\[\lim_{n\to\infty}\left(1+\frac1{n^2}\right)^n=\lim_{n\to\infty}\left(1+\frac1n\right)^{\sqrt n}=\lim_{n\to\infty}\left(1+\frac1n\right)^{n/\sqrt n}=\lim_{n\to\infty}e^{1/\sqrt n}=1
\]
Day 1
P4 Q3
设 \(a,b\in \mathbb{R}\),证明对任何正数 \(\epsilon\),有 \(|a-b|<\epsilon\),则 \(a=b\)。
\(\forall\epsilon>0,|a-b|<\epsilon\),则 \(|a-b|\) 是 \((0,+\infty)\) 的下界
又 \((0,+\infty)\) 的下确界为 \(0\),则 \(|a-b|\le0\),即 \(|a-b|=0\)
由绝对值的性质得当且仅当 \(a-b=0\),即 \(a=b\) 时 \(|a-b|=0\)
P8 Q7
设 \(A,B\) 皆为非空有界数集,定义数集
\[A+B=\{z|z=x+y,x\in A,y\in B\}
\]
证明:(1)\(\sup(A+B)=\sup A+\sup B\);(2)\(\inf(A+B)=\inf A+\inf B\)
令 \(x_1=\sup A,y_1=\sup B\)
有 \(\forall\epsilon>0,\exist x\in A,~\mathrm{s.t.}~x>x_1-\epsilon\)
对于同一个 \(\epsilon>0,\exist y\in B,~\mathrm{s.t.}~y>y_1-\epsilon\)
得 \(\forall\epsilon>0,\exist x+y\in A+B,~\mathrm{s.t.}~x+y>x_1+y_1-\epsilon\)
即 \(x_1+y_1\) 是 \(A+B\) 的上确界,即 \(\sup(A+B)=\sup A+\sup B\)
\(\inf(A+B)=\inf A+\inf B\) 同理。
P18 Q8 (1)
设 \(f,g\) 为定义在 \(D\) 上的有界函数,满足
\[f(x)\le g(x),x\in D
\]
证明:\(\sup\limits_{x\in D}f(x)\le\sup\limits_{x\in D} g(x)\)
由上确界定义得 \(\forall x\in D,~f(x)\le g(x)\le\sup\limits_{x\in D}g(x)\)
则 \(\sup\limits_{x\in D}g(x)\) 是 \(f(x)\) 的上界
上确界是最小的上界,则 \(\sup\limits_{x\in D}f(x)\le\sup\limits_{x\in D} g(x)\)