mit 6.824 raft实现过程(Part A)

课程地址

raft论文中文翻译

lab必看的guidance

Part B详解(核心)

代码完整实现



Part A

PartA的任务主要是实现领导人选举和心跳机制,因为不要求实现日志复制和校验功能,所以实现起来比较简单。这里必须要小心的是计时器的实现,课程推荐不要用go里面的timer,我就自己实现了一个,计时器的性能其实对后面的实验很关键,一开始的计时器实现的比较糟糕,后面实现就一直出错.... 后来想到的办法是利用go的channel配合循环来实现的,每轮循环先抢锁来检验server自己的状态,来判断其行为。还有一个就是投票计数的功能,我用的是一个局部变量votes来计数,之前尝试过用go的条件变量来实现该计数方法,不过后面那种方法的实现看起来比较复杂,就采用了原子计数法来实现。完整代码如下:

package raft

//
// this is an outline of the API that raft must expose to
// the service (or tester). see comments below for
// each of these functions for more details.
//
// rf = Make(...)
//   create a new Raft server.
// rf.Start(command interface{}) (index, term, isleader)
//   start agreement on a new log entry
// rf.GetState() (term, isLeader)
//   ask a Raft for its current term, and whether it thinks it is leader
// ApplyMsg
//   each time a new entry is committed to the log, each Raft peer
//   should send an ApplyMsg to the service (or tester)
//   in the same server.
//

import (
	"math/rand"
	"sync"
	"time"
)
import "sync/atomic"
import "../labrpc"

// import "bytes"
// import "../labgob"

const (
	Follower = iota
	Candidate
	Leader
	ResetTimer
	FlushState
)

//The tester requires that the leader send heartbeat RPCs no more than ten times per second.
const HeartBeatTimeout = time.Duration(100) * time.Millisecond

//
// as each Raft peer becomes aware that successive log entries are
// committed, the peer should send an ApplyMsg to the service (or
// tester) on the same server, via the applyCh passed to Make(). set
// CommandValid to true to indicate that the ApplyMsg contains a newly
// committed log entry.
//
// in Lab 3 you'll want to send other kinds of messages (e.g.,
// snapshots) on the applyCh; at that point you can add fields to
// ApplyMsg, but set CommandValid to false for these other uses.
//
type ApplyMsg struct {
	CommandValid bool
	Command      interface{}
	CommandIndex int
}

type Entry struct {
	Term    int
	Command interface{}
}

//
// A Go object implementing a single Raft peer.
//
type Raft struct {
	mu        sync.Mutex          // Lock to protect shared access to this peer's state
	peers     []*labrpc.ClientEnd // RPC end points of all peers
	persister *Persister          // Object to hold this peer's persisted state
	me        int                 // this peer's index into peers[]
	dead      int32               // set by Kill()

	// Your data here (2A, 2B, 2C).
	// Look at the paper's Figure 2 for a description of what
	// state a Raft server must maintain.
	majority int32
	state    int
	flushCh  chan int

	// Persistent state on all servers
	votedFor    int
	currentTerm int
	log         []Entry

	// Volatile state on all servers
	lastApplied int
	commitIndex int

	// Volatile state on leader
	nextIndex  []int
	matchIndex []int
}

// return currentTerm and whether this server
// believes it is the leader.
func (rf *Raft) GetState() (int, bool) {

	var term int
	var isleader bool
	// Your code here (2A).
	rf.mu.Lock()
	defer rf.mu.Unlock()
	term = rf.currentTerm
	isleader = rf.state == Leader
	return term, isleader
}

//
// save Raft's persistent state to stable storage,
// where it can later be retrieved after a crash and restart.
// see paper's Figure 2 for a description of what should be persistent.
//
func (rf *Raft) persist() {
	// Your code here (2C).
	// Example:
	// w := new(bytes.Buffer)
	// e := labgob.NewEncoder(w)
	// e.Encode(rf.xxx)
	// e.Encode(rf.yyy)
	// data := w.Bytes()
	// rf.persister.SaveRaftState(data)
}

//
// restore previously persisted state.
//
func (rf *Raft) readPersist(data []byte) {
	if data == nil || len(data) < 1 { // bootstrap without any state?
		return
	}
	// Your code here (2C).
	// Example:
	// r := bytes.NewBuffer(data)
	// d := labgob.NewDecoder(r)
	// var xxx
	// var yyy
	// if d.Decode(&xxx) != nil ||
	//    d.Decode(&yyy) != nil {
	//   error...
	// } else {
	//   rf.xxx = xxx
	//   rf.yyy = yyy
	// }
}

type RequestVoteArgs struct {
	// Your data here (2A, 2B).
	Term        int
	CandidateId int
	//LastLogIndex	int
	//LastLogTerm		int
}

type RequestVoteReply struct {
	// Your data here (2A).
	Term        int
	VoteGranted bool
}

func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {
	// Your code here (2A, 2B).
	rf.mu.Lock()
	defer rf.mu.Unlock()
	reply.Term = rf.currentTerm

	if rf.currentTerm > args.Term {
		reply.VoteGranted = false
		//DPrintf("%d refuse RV from %d",rf.me,args.CandidateId)
		return
	}
	if rf.currentTerm < args.Term {
		rf.beFollower(args.Term)
	}
	// If votedFor is null or candidateId, and candidate’s log is at
	// least as up-to-date as receiver’s log, grant vote
	if rf.votedFor == -1 || rf.votedFor == args.CandidateId {
		rf.votedFor = args.CandidateId
		reply.VoteGranted = true
		rf.state = Follower
		//vote granted reset timer
		rf.flush(ResetTimer)
	}
}

//
// example code to send a RequestVote RPC to a server.
// server is the index of the target server in rf.peers[].
// expects RPC arguments in args.
// fills in *reply with RPC reply, so caller should
// pass &reply.
// the types of the args and reply passed to Call() must be
// the same as the types of the arguments declared in the
// handler function (including whether they are pointers).
//
// The labrpc package simulates a lossy network, in which servers
// may be unreachable, and in which requests and replies may be lost.
// Call() sends a request and waits for a reply. If a reply arrives
// within a timeout interval, Call() returns true; otherwise
// Call() returns false. Thus Call() may not return for a while.
// A false return can be caused by a dead server, a live server that
// can't be reached, a lost request, or a lost reply.
//
// Call() is guaranteed to return (perhaps after a delay) *except* if the
// handler function on the server side does not return.  Thus there
// is no need to implement your own timeouts around Call().
//
// look at the comments in ../labrpc/labrpc.go for more details.
//
// if you're having trouble getting RPC to work, check that you've
// capitalized all field names in structs passed over RPC, and
// that the caller passes the address of the reply struct with &, not
// the struct itself.
//
func (rf *Raft) sendRequestVote(server int, args *RequestVoteArgs, reply *RequestVoteReply) bool {
	ok := rf.peers[server].Call("Raft.RequestVote", args, reply)
	return ok
}

type AppendEntriesArgs struct {
	Term     int
	LeaderId int
}

type AppendEntriesReply struct {
	Term    int
	Success bool
}

func (rf *Raft) AppendEntries(args *AppendEntriesArgs, reply *AppendEntriesReply) {
	rf.mu.Lock()
	defer rf.mu.Unlock()
	reply.Term = rf.currentTerm
	if rf.currentTerm > args.Term {
		reply.Success = false
		//DPrintf("%d refuse AE from %d",rf.me,args.LeaderId)
		return
	}
	if rf.currentTerm < args.Term {
		rf.beFollower(args.Term)
	}
	reply.Success = true
	//DPrintf("%d accept AE from %d",rf.me,args.LeaderId)
	rf.flush(ResetTimer)
}

func (rf *Raft) sendAppendEntries(server int, args *AppendEntriesArgs, reply *AppendEntriesReply) bool {
	ok := rf.peers[server].Call("Raft.AppendEntries", args, reply)
	//DPrintf("%d send AE to %d",rf.me,server)
	return ok
}

//
// the service using Raft (e.g. a k/v server) wants to start
// agreement on the next command to be appended to Raft's log. if this
// server isn't the leader, returns false. otherwise start the
// agreement and return immediately. there is no guarantee that this
// command will ever be committed to the Raft log, since the leader
// may fail or lose an election. even if the Raft instance has been killed,
// this function should return gracefully.
//
// the first return value is the index that the command will appear at
// if it's ever committed. the second return value is the current
// term. the third return value is true if this server believes it is
// the leader.
//
func (rf *Raft) Start(command interface{}) (int, int, bool) {
	index := -1
	term := -1
	isLeader := true

	// Your code here (2B).

	return index, term, isLeader
}

//
// the tester doesn't halt goroutines created by Raft after each test,
// but it does call the Kill() method. your code can use killed() to
// check whether Kill() has been called. the use of atomic avoids the
// need for a lock.
//
// the issue is that long-running goroutines use memory and may chew
// up CPU time, perhaps causing later tests to fail and generating
// confusing debug output. any goroutine with a long-running loop
// should call killed() to check whether it should stop.
//
func (rf *Raft) Kill() {
	atomic.StoreInt32(&rf.dead, 1)
	// Your code here, if desired.
}

func (rf *Raft) killed() bool {
	z := atomic.LoadInt32(&rf.dead)
	return z == 1
}

//Mass RPC to AppendEntries
func (rf *Raft) groupAppendLog() {
	rf.mu.Lock()
	args := &AppendEntriesArgs{
		rf.currentTerm,
		rf.me,
	}
	rf.mu.Unlock()

	for pid := range rf.peers {
		if pid != rf.me {
			go func(idx int) {
				reply := &AppendEntriesReply{}
				ok := rf.sendAppendEntries(idx, args, reply)

				if ok {
					rf.mu.Lock()
					if reply.Term > rf.currentTerm {
						rf.beFollower(reply.Term)
					}
					rf.mu.Unlock()
					//TODO log handle
				}
			}(pid)
		}
	}
}

//Mass RPC to RequestVote
func (rf *Raft) kickoffElection(args *RequestVoteArgs) {
	//vote counter,start from 1
	var votes int32 = 1
	for pid := range rf.peers {
		if pid != rf.me {
			go func(idx int) {
				reply := &RequestVoteReply{}
				ret := rf.sendRequestVote(idx, args, reply)
				if ret {
					rf.mu.Lock()
					defer rf.mu.Unlock()
					//If RPC request or response contains term T > currentTerm
					//set currentTerm = T, convert to follower
					if reply.Term > rf.currentTerm {
						rf.beFollower(reply.Term)
						return
					}
					if rf.state != Candidate || rf.currentTerm != args.Term {
						return
					}
					if reply.VoteGranted {
						atomic.AddInt32(&votes, 1)
						if atomic.LoadInt32(&votes) > rf.majority {
							rf.beLeader()
							//DPrintf("%d step into leader" ,rf.me)
							//be leader,flush state and start heartbeat
							rf.flush(FlushState)
						}
					}
				}
			}(pid)
		}
	}
}

func (rf *Raft) beFollower(term int) {
	rf.state = Follower
	rf.votedFor = -1
	rf.currentTerm = term
	//DPrintf("%d convert to follower",rf.me)
}

func (rf *Raft) beCandidate() {
	rf.state = Candidate
	rf.currentTerm++
	rf.votedFor = rf.me
	args := RequestVoteArgs {
		Term:        rf.currentTerm,
		CandidateId: rf.me,
	}
	go rf.kickoffElection(&args)
}

func (rf *Raft) beLeader() {
	//weather it still candidate
	if rf.state != Candidate {
		return
	}
	rf.state = Leader
}

//case 1:receive AppendEntries RPC from current leader or granting vote to candidate,reset timer
//case 2:step into leader and start heartbeat,jump out of select section in ticker() to flush leader state
func (rf *Raft) flush(behaviour int) {
	//select {
	//case <- rf.flushCh:
	//default:
	//}
	rf.flushCh <- behaviour
	//DPrintf("%d reset",rf.me)
}

func (rf *Raft) ticker() {
	for !rf.killed() {
		electionTimeout := rand.Intn(150) + 350 //election timeout between 350-500 ms

		rf.mu.Lock()
		state := rf.state
		rf.mu.Unlock()

		switch state {
		case Follower, Candidate:
			select {
			case <-time.After(time.Duration(electionTimeout) * time.Millisecond):
				rf.mu.Lock()
				//out of time,kick off election
				rf.beCandidate()
				//DPrintf("%d kick off election",rf.me)
				rf.mu.Unlock()
			case <-rf.flushCh:
				//case 1:receive heartBeat or replicated log or vote for candidate,reset timer
				//case 2:be leader and start heartbeat,jump out of select to flush state
			}
		case Leader:
			//DPrintf("%d is LEADER",rf.me)
			rf.groupAppendLog()
			time.Sleep(HeartBeatTimeout)
		}
	}
}

//
// the service or tester wants to create a Raft server. the ports
// of all the Raft servers (including this one) are in peers[]. this
// server's port is peers[me]. all the servers' peers[] arrays
// have the same order. persister is a place for this server to
// save its persistent state, and also initially holds the most
// recent saved state, if any. applyCh is a channel on which the
// tester or service expects Raft to send ApplyMsg messages.
// Make() must return quickly, so it should start goroutines
// for any long-running work.
//
func Make(peers []*labrpc.ClientEnd, me int,
	persister *Persister, applyCh chan ApplyMsg) *Raft {
	rf := &Raft{}
	rf.peers = peers
	rf.persister = persister
	rf.me = me

	// Your initialization code here (2A, 2B, 2C).
	rf.majority = int32(len(rf.peers) / 2)
	rf.flushCh = make(chan int, 1)
	rf.votedFor = -1
	rf.currentTerm = 0
	rf.state = Follower
	rf.log = make([]Entry, 1)

	// initialize from state persisted before a crash
	rf.readPersist(persister.ReadRaftState())
	// timer start
	go rf.ticker()
	return rf
}
posted @ 2021-02-09 22:54  LWenH  阅读(780)  评论(0)    收藏  举报