Codeforces Round #429 (Div. 2) C. Leha and Function
Leha like all kinds of strange things. Recently he liked the function F(n, k). Consider all possible k-element subsets of the set [1, 2, ..., n]. For subset find minimal element in it. F(n, k) — mathematical expectation of the minimal element among all k-element subsets.
But only function does not interest him. He wants to do interesting things with it. Mom brought him two arrays A and B, each consists of m integers. For all i, j such that 1 ≤ i, j ≤ m the condition Ai ≥ Bj holds. Help Leha rearrange the numbers in the array A so that the sum
is maximally possible, where A' is already rearranged array.
First line of input data contains single integer m (1 ≤ m ≤ 2·105) — length of arrays A and B.
Next line contains m integers a1, a2, ..., am (1 ≤ ai ≤ 109) — array A.
Next line contains m integers b1, b2, ..., bm (1 ≤ bi ≤ 109) — array B.
Output m integers a'1, a'2, ..., a'm — array A' which is permutation of the array A.
5
7 3 5 3 4
2 1 3 2 3
4 7 3 5 3
7
4 6 5 8 8 2 6
2 1 2 2 1 1 2
2 6 4 5 8 8 6
题意:输入两个区间长度为m的集合A、B,重新构造集合A成为A’,使得A’集合中所有长度为A’[i]的1....n集合的所有长度为B[i]的子集的最小值的期望之和最大。
题解:A集合中的最大值依次对应B中的最小值。
代码:
#include <cstdio>
#include <algorithm>
using namespace std;
struct num{
int id;
int nu;
}c[210000];
bool cmp(num x,num y){
return x.nu<y.nu;
}
bool cmp1(int x,int y){
return x>y;
}
int main(){
int n;
int a[210000],b[210000];
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
for(int i=0;i<n;i++){
scanf("%d",&c[i].nu);
c[i].id=i;
}
sort(a,a+n,cmp1);
sort(c,c+n,cmp);
for(int i=0;i<n;i++){
b[c[i].id]=a[i];
}
for(int i=0;i<n;i++){
if(i==0) printf("%d",b[i]);
else printf(" %d",b[i]);
}
printf(
