AtCoder Beginner Contest 240 F - Sum Sum Max
原题链接F - Sum Sum Max
首先令\(z_i = \sum\limits_{k = 1}^i y_k\),\(z_0 = 0\),\(z_i\)就是第\(i\)段相同的个数的前缀和.
对于第\(i\)段和\(i - 1\)段,我们有\(z_{i - 1}\leq k \leq z_i\),这一段的值就全是\(x_i\),相当于\(C_k = x_i\).
对于某一段\(1 \leq n \leq z_i - z_{i - 1}\),有\(n\)个\(x_i\)
\[B_{z_i - 1 + n} = B_{z_i - 1} + n * x_i
\]
\[\begin{equation*}
\begin{aligned}
A_{z_i - 1 + n} &= A_{z_i - 1} + \sum\limits_{k = 1}^nB_{z_i - 1 + k} \\
&= A_{z_i - 1} + \sum\limits_{k = 1}^n( B_{z_i - 1} + K * x_i) \\
&= A_{z_i - 1} + B_{z_i - 1}n + x_i \times \cfrac{n(n + 1)}{2}
\end{aligned}
\end{equation*}
\]
把\(A_{z_i - 1 + n} = a * n^2 + bn + c\)看成一个二次函数\(f(n)\),所以我们的任务就是对于\(1 \leq n \leq z_i - z_{i - 1}\),求\(f\)的最值.
如果\(a > 0\),那么最大值在两端点\(f(1)\)与\(f(z_i - z_{i - 1})\)处取得。
如果\(a < 0\),那么就是单峰函数,我们可以使用三分,令\(ml = (l + r) / 2, mr = ml + 1\),结束条件\(r - l > 2\),那么最终结束\(r - l == 2\),所以我们的最值就是\(f(l + r)\)或者\(f(r - 1)\)
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
template<typename F> ll ternary_search(ll l, ll r, const F& f) {
while (r - l > 2) {
const ll ml = (l + r) / 2;
const ll mr = ml + 1;
if (f(ml) < f(mr)) {
l = ml;
} else {
r = mr;
}
}
return f(l + 1);
}
void solve() {
int n, m;
cin >> n >> m;
ll res = numeric_limits<ll>::min();
ll a = 0, b = 0;
for (int i = 1; i <= n; i++) {
ll x, y; cin >> x >> y;
const auto f = [&](const ll k) {
return a + b * k + k * (k + 1) / 2 * x;
};
if (x > 0) {
res = max({res, f(1), f(y)});
} else {
res = max(res, ternary_search(0, y + 1, f));
}
a = f(y);
b += x * y;
}
cout << res << "\n";
}
int main() {
ios::sync_with_stdio(false); cin.tie(0);
int test;
cin >> test;
for (int i = 0; i < test; ++i) solve();
return 0;
}

浙公网安备 33010602011771号