地理空间距离计算优化

http://www.cnblogs.com/LBSer/p/4020306.html

在美团技术博客发表《地理空间距离计算优化》一文,有相似场景的朋友可以参考。

https://tech.meituan.com/2014/09/05/lucene-distance.html

打开美团app,不管是筛选团购还是筛选商家,默认的排序项都是“离我最近”或者“智能排序”(如下图所示)。

不管是“离我最近”还是“智能排序”,都涉及到计算用户位置与各个团购单子或者商家的距离(注:在智能排序中距离作为一个重要的参数参与排序打分)。以筛选商家为例,北京地区有5~6w个POI(本文将商家称之为POI),当用户进入商家页,请求北京全城+所有品类+离我最近/智能排序时,我们筛选服务需要计算一遍用户位置与北京全城所有POI的距离。

这种大量计算距离的场景十分消耗资源,从测试来看目前5w个点仅计算一遍距离就需要7ms,而到100w的时候就需要140多ms,随着数据的快速增长,筛选服务的性能将会非常堪忧。

如何优化距离的计算,进而提高计算速度、降低cpu使用率已经迫在眉睫。美团移动后台团购组在此方向上进行了些许探索,下文将分为4部分展开:1)地理空间距离计算原理;2)Lucene使用的距离计算公式;3)优化方案;4)实际应用。

......

posted @ 2014-10-12 11:28  zhanlijun  阅读(1958)  评论(0编辑  收藏