矩阵快速幂常用矩阵构造

斐波那契数列: \(F_i = F_{i-1} + F_{i-2}\)

\[\begin{bmatrix} F_i \\ F_{i-1} \end{bmatrix}= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} F_{i-1} \\ F_{i-2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{i-1} \times \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} \]

递推式 - 1: \(G_i = a \times G_{i-1} + b \times G_{i-2}\)

\[\begin{bmatrix} G_i \\ G_{i-1} \end{bmatrix} = \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} G_{i-1} \\ G_{i-2} \end{bmatrix} = \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix}^{i-1} \times \begin{bmatrix} G_1 \\ G_0 \end{bmatrix} \]

递推式 - 2: \(G_i = a \times G_{i-1} + i^2\)

\[\begin{bmatrix} G_i \\ (i+1)^2 \\ i+1 \\ 1 \end{bmatrix} = \begin{bmatrix} a & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} G_{i-1} \\ i^2 \\ i \\ 1 \end{bmatrix} = \begin{bmatrix} a & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}^i \times \begin{bmatrix} G_0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \]

递推式 - 3: \(G_i = a \times G_{i-1} + i^3\)

\[\begin{bmatrix} G_i \\ (i+1)^3 \\ (i+1)^2 \\ i+1 \\ 1 \end{bmatrix} = \begin{bmatrix} a & 1 & 0 & 0 & 0 \\ 0 & 1 & 3 & 3 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} G_{i-1} \\ i^3 \\ i^2 \\ i \\ 1 \end{bmatrix} = \begin{bmatrix} a & 1 & 0 & 0 & 0 \\ 0 & 1 & 3 & 3 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}^i \times \begin{bmatrix} G_0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \]

递推式 - 4: \(G_i = a \times G_{i-1} + b^i\)

\[\begin{bmatrix} G_i \\ b^{i+1} \end{bmatrix} = \begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix} \times \begin{bmatrix} G_{i-1} \\ b^i \end{bmatrix} = \begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix}^i \times \begin{bmatrix} G_0 \\ b \end{bmatrix} \]

递推式 - 带常数:\(f(n) = a \times f(n-1) + b \times f(n-3) + c\)

\[\begin{bmatrix} f[n] \\ f[n-1] \\ f[n-2] \\ c \end{bmatrix} = \begin{bmatrix} a & 0 & b & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} f[n-1] \\ f[n-2] \\ f[n-3] \\ c \end{bmatrix} = \begin{bmatrix} a & 0 & b & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{n-2} \times \begin{bmatrix} f[2] \\ f[1] \\ f[0] \\ c \end{bmatrix} \]

递推式 - 带变量:\(f(1)=1\)\(f(2)=2\)\(f(n) = f(n-1) + 2f(n-2) + n^3\)

利用二项式定理:

\[n^3 = (n-1+1)^3 = (n-1)^3 + 3(n-1)^2 + 3(n-1) + 1 \]

\[\begin{bmatrix} f(n) \\ f(n-1) \\ n^3 \\ n^2 \\ n \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 3 & 3 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 3 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} f(n-1) \\ f(n-2) \\ (n-1)^3 \\ (n-1)^2 \\ n-1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 3 & 3 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 3 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}^{n-2} \times \begin{bmatrix} f(2) \\ f(1) \\ 8 \\ 4 \\ 2 \\ 1 \end{bmatrix} \]

递推式 - 前缀和:

递推式定义:

  • \( T[0]=T[1]=T[2]=1 \)
  • \( T[n]=T[n-1]+T[n-2]+T[n-3] \ (n \geq 3) \)
  • \( S[n] = T[0] + T[1] + \dots + T[n] = S[n-1] + T[n-1]+T[n-2]+T[n-3] \)

\[\begin{bmatrix} S[n] \\ T[n] \\ T[n-1] \\ T[n-2] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} S[n-1] \\ T[n-1] \\ T[n-2] \\ T[n-3] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}^{n-2} \cdot \begin{bmatrix} S[2] \\ T[2] \\ T[1] \\ T[0] \end{bmatrix} \]

posted @ 2025-10-30 22:26  Ke_scholar  阅读(7)  评论(0)    收藏  举报