Luogu P2257 YY的GCD
题意
\(T\) 组数据,每组数据给定 \(n,m\),求 \(\sum\limits_{p\in P}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[\gcd(i,j)=p]\)。(这里 \(P\) 是质数集)
\(\texttt{Data Range:}T=10^4,1\leq n,m\leq 10^7\)
题解
第一个求和符号里面的和式很平凡,直接写出来大概是这样:
\[\sum\limits_{p\in P}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[\gcd(i,j)=p]=\sum\limits_{p\in P}\sum\limits_{d=1}^{\left\lfloor\frac{n}{p}\right\rfloor}\mu(d)\left\lfloor\frac{n}{dp}\right\rfloor\left\lfloor\frac{m}{dp}\right\rfloor
\]
然后我们考虑将枚举 \(d\) 改成枚举 \(T=dp\),那么有
\[\sum\limits_{p\in P}\sum\limits_{d=1}^{\left\lfloor\frac{n}{p}\right\rfloor}\mu(d)\left\lfloor\frac{n}{dp}\right\rfloor\left\lfloor\frac{m}{dp}\right\rfloor=\sum\limits_{p\in P}\sum\limits_{T=1}^{n}\mu\left(\frac{T}{p}\right)\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor
\]
注意到我们可以交换一下求和变量
\[\sum\limits_{p\in P}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[\gcd(i,j)=p]=\sum\limits_{T=1}^{n}\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor\sum\limits_{p\mid T,p\in P}\mu\left(\frac{T}{p}\right)
\]
注意到在筛出 \(\mu\) 之后可以考虑通过枚举来预处理出 \(\sum\limits_{p\mid T,p\in P}\mu\left(\frac{T}{p}\right)\),然后整除分块就做完了。
代码
#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=1e7+51;
ll test,ptot,n,m;
ll np[MAXN],prime[MAXN],mu[MAXN];
li f[MAXN],prefix[MAXN];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
inline void sieve(ll limit)
{
np[1]=mu[1]=1;
for(register int i=2;i<=limit;i++)
{
if(!np[i])
{
prime[++ptot]=i,mu[i]=-1;
}
for(register int j=1;i*prime[j]<=limit;j++)
{
np[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
}
inline li calc(ll n,ll m)
{
li res=0;
for(register int l=1,r;l<=min(n,m);l=r+1)
{
r=min(n/(n/l),m/(m/l));
res+=(prefix[r]-prefix[l-1])*(n/l)*(m/l);
}
return res;
}
int main()
{
test=read(),sieve(1e7+10);
for(register int i=1;i<=ptot;i++)
{
for(register int j=1;prime[i]*j<=1e7;j++)
{
f[prime[i]*j]+=mu[j];
}
}
for(register int i=1;i<=1e7;i++)
{
prefix[i]=prefix[i-1]+f[i];
}
for(register int i=0;i<test;i++)
{
n=read(),m=read(),printf("%lld\n",calc(n,m));
}
}

浙公网安备 33010602011771号