模板:KD-Tree
KD-Tree,用来解决多维空间中的问题,其实就是优化暴力(逃
一般cdq能做的它都能做,而且。。。既然是优化暴力,那就学习一下了
对与几个n维点,我们将它每一维分割,建立一颗二叉树,方便我们搜索剪枝
它好像插入比较麻烦,和替罪羊一样暴力重构,博主蒟蒻不会啦
KD-Tree能解决的问题:平面上点对最小,最大距离,k大距离(包括曼哈顿距离和欧式距离)
当然这是我的理解,可能会有偏差
KD-Tree基本模板:
struct node{
int d[2],l,r,mx[2],mn[2],id;
friend bool operator < (node a,node b){
return a.d[now]<b.d[now];
}
}ask,tr[MAXN];
struct KD_TREE{
void update(int x){
int l=tr[x].l,r=tr[x].r;
for(int i=0;i<=1;i++){
tr[x].mn[i]=tr[x].mx[i]=tr[x].d[i];
if(l!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[l].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[l].mx[i]);
}
if(r!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[r].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[r].mx[i]);
}
}
}
int dis(node a,node b){
int res=0;
for(int i=0;i<=1;i++){
res+=power(a.d[i]-b.d[i]);
}
return res;
}
int get_dis(node a){
int res=0;
for(int i=0;i<=1;i++){
res+=max(power(a.mx[i]-ask.d[i]),power(a.mn[i]-ask.d[i]));
}
return res;
}
void build(int &rt,int l,int r,int d){
int mid=(l+r)>>1;
now=d;
nth_element(tr+l,tr+mid,tr+r+1);
if(l<mid) build(tr[mid].l,l,mid-1,d^1);
if(r>mid) build(tr[mid].r,mid+1,r,d^1);
update(mid);
rt=mid;
}
void query(int x){
if(!x) return ;
int sum_l=inf,sum_r=inf,dist=dis(tr[x],ask);
if(tr[x].l) sum_l=get_dis(tr[tr[x].l]);
if(tr[x].r) sum_r=get_dis(tr[tr[x].r]);
if(dist>-q.top()){
q.pop();
q.push(-dist);
}
if(sum_l>sum_r){
if(sum_l>=-q.top()) query(tr[x].l);
if(sum_r>=-q.top()) query(tr[x].r);
}else{
if(sum_r>=-q.top()) query(tr[x].r);
if(sum_l>=-q.top()) query(tr[x].l);
}
}
}KD_Tree;
其中dis和get_dis是随题而定,其他的基本不变
例题:Hide and Seek
题目大意:给出平面内几个点的坐标,求曼哈顿距离最小值
挺水的,上代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define MAXN 500005
#define inf 0x7fffffff
using namespace std;
int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9'){ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int abs(int a){return a<0?-a:a;}
int n,now,root,ans=inf;
struct node{
int d[2],l,r,mx[2],mn[2];
friend bool operator < (node a,node b){
return a.d[now]<b.d[now];
}
friend int dis(node a,node b){
return abs(a.d[0]-b.d[0])+abs(a.d[1]-b.d[1]);
}
}tr[MAXN];
struct KD_TREE{
node p[MAXN],t;
int ans;
private:
void update(int x){
int l=p[x].l,r=p[x].r;
for(int i=0;i<=1;i++){
if(l!=0){
p[x].mn[i]=min(p[x].mn[i],p[l].mn[i]);
p[x].mx[i]=max(p[x].mx[i],p[l].mx[i]);
}
if(r!=0){
p[x].mn[i]=min(p[x].mn[i],p[r].mn[i]);
p[x].mx[i]=max(p[x].mx[i],p[r].mx[i]);
}
}
}
int get_min(node x){
int sum=0;
for(int i=0;i<=1;i++){
sum+=max(x.mn[i]-t.d[i],0);
sum+=max(t.d[i]-x.mx[i],0);
}
return sum;
}
int get_max(node x){
int sum=0;
for(int i=0;i<=1;i++){
sum+=max(abs(x.mn[i]-t.d[i]),abs(x.mx[i]-t.d[i]));
}
return sum;
}
public:
void build(int &rt,int l,int r,int d){
int mid=l+r>>1;
now=d;
nth_element(tr+l,tr+mid,tr+r+1);
p[mid]=tr[mid];
for(int i=0;i<=1;i++)
p[mid].mx[i]=p[mid].mn[i]=p[mid].d[i];
if(l<mid) build(p[mid].l,l,mid-1,d^1);
if(r>mid) build(p[mid].r,mid+1,r,d^1);
update(mid);
rt=mid;
}
void query_min(int k){
int dist=dis(p[k],t);
if(dist) ans=min(ans,dist);
int sum_l=inf,sum_r=inf;
if(p[k].l) sum_l=get_min(p[p[k].l]);
if(p[k].r) sum_r=get_min(p[p[k].r]);
if(sum_l>sum_r){
if(sum_r<ans) query_min(p[k].r);
if(sum_l<ans) query_min(p[k].l);
}else{
if(sum_l<ans) query_min(p[k].l);
if(sum_r<ans) query_min(p[k].r);
}
}
void query_max(int k){
ans=max(ans,dis(p[k],t));
int sum_l=-inf,sum_r=-inf;
if(p[k].l) sum_l=get_max(p[p[k].l]);
if(p[k].r) sum_r=get_max(p[p[k].r]);
if(sum_l>sum_r){
if(sum_l>ans) query_max(p[k].l);
if(sum_r>ans) query_max(p[k].r);
}else{
if(sum_r>ans) query_max(p[k].r);
if(sum_l>ans) query_max(p[k].l);
}
}
}KD_Tree;
int main(){
n=read();
for(int i=1;i<=n;i++){
tr[i].d[0]=read();
tr[i].d[1]=read();
}
KD_Tree.build(root,1,n,0);
for(int i=1;i<=n;i++){
KD_Tree.t=tr[i];
KD_Tree.ans=inf;
KD_Tree.query_min(root);
int minn=KD_Tree.ans;
KD_Tree.ans=-inf;
KD_Tree.query_max(root);
int maxx=KD_Tree.ans;
ans=min(ans,maxx-minn);
}
printf("%d\n",ans);
return 0;
}
例题:JZPFAR:
题目大意:给定平面上n个点坐标以及m次询问,每一次输出欧式距离距目标点第k大的点的标号
跟上一个差不多,估价函数变了,
第k大的话,维护一个有k个元素的堆,每次有更优的就pop队顶,最终top就是答案
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define MAXN 500005
#define inf 0x7fffffff
#define int long long
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int abs(int a){return a<0?-a:a;}
int power(int a){return a*a;}
int n,m,now,root,k;
struct data{
int dis,id;
friend bool operator < (data a,data b){
return a.dis==b.dis?a.id<a.id:a.dis>b.dis;
}
};
priority_queue< data > q;
struct node{
int d[2],l,r,mx[2],mn[2],id;
friend bool operator < (node a,node b){
return a.d[now]<b.d[now];
}
}ask,tr[MAXN],p[MAXN];
struct KD_TREE{
private:
void update(int x){
int l=tr[x].l,r=tr[x].r;
for(int i=0;i<=1;i++){
tr[x].mn[i]=tr[x].mx[i]=tr[x].d[i];
if(l!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[l].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[l].mx[i]);
}
if(r!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[r].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[r].mx[i]);
}
}
}
int dis(node a,node b){
int res=0;
for(int i=0;i<=1;i++){
res+=power(a.d[i]-b.d[i]);
}
return res;
}
int calc(int x){
if(x==0) return -2;
int res=0;
for(int i=0;i<=1;i++){
res+=max(power(tr[x].mx[i]-ask.d[i]),power(tr[x].mn[i]-ask.d[i]));
}
return res;
}
public:
void build(int &rt,int l,int r,int d){
int mid=(l+r)>>1;
now=d;
nth_element(p+l,p+mid,p+r+1);
tr[mid]=p[mid];
if(l<mid) build(tr[mid].l,l,mid-1,d^1);
if(r>mid) build(tr[mid].r,mid+1,r,d^1);
update(mid);
rt=mid;
}
void query(int x){
//cout<<x<<endl;
if(!x) return ;
int sum_l=calc(tr[x].l),sum_r=calc(tr[x].r),dist=dis(tr[x],ask);
//cout<<sum_l<<' '<<sum_r<<' '<<dist<<endl;
if(dist>q.top().dis||(dist==q.top().dis&&tr[x].id<q.top().id)){
q.pop();
//cout<<dist<<' '<<tr[x].id<<endl;
q.push((data){dist,tr[x].id});
}
if(sum_l>sum_r){
if(sum_l>=q.top().dis) query(tr[x].l);
if(sum_r>=q.top().dis) query(tr[x].r);
}else{
if(sum_r>=q.top().dis) query(tr[x].r);
if(sum_l>=q.top().dis) query(tr[x].l);
}
}
}KD_Tree;
signed main(){
n=read();
for(int i=1;i<=n;i++){
p[i].d[0]=read();
p[i].d[1]=read();
p[i].id=i;
}
KD_Tree.build(root,1,n,0);
//cout<<root<<endl;
m=read();
for(int i=1;i<=m;i++){
ask.d[0]=read();
ask.d[1]=read();
k=read();
while(!q.empty()) q.pop();
for(int i=1;i<=k;i++)
q.push((data){-1,0});
// q.push(make_pair(-1,0));
KD_Tree.query(root);
//cout<<q.top().first<<endl;
printf("%lld\n",q.top().id);
}
return 0;
}
进阶:K远点对
题目大意:已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对。
和上一个一样,只不过这一次我们要对每个点query一遍,
其中维护一个2k的堆(因为会重复算),最终堆顶就是答案
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define MAXN 100005
#define inf 0x7fffffff
#define int long long
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int abs(int a){return a<0?-a:a;}
int power(int a){return a*a;}
int n,m,now,root,k;
struct data{
int dis;
friend bool operator < (data a,data b){
return a.dis<b.dis;
}
};
priority_queue<int> q;
struct node{
int d[2],l,r,mx[2],mn[2],id;
friend bool operator < (node a,node b){
return a.d[now]<b.d[now];
}
}ask,tr[MAXN];
struct KD_TREE{
void update(int x){
int l=tr[x].l,r=tr[x].r;
for(int i=0;i<=1;i++){
tr[x].mn[i]=tr[x].mx[i]=tr[x].d[i];
if(l!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[l].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[l].mx[i]);
}
if(r!=0){
tr[x].mn[i]=min(tr[x].mn[i],tr[r].mn[i]);
tr[x].mx[i]=max(tr[x].mx[i],tr[r].mx[i]);
}
}
}
int dis(node a,node b){
int res=0;
for(int i=0;i<=1;i++){
res+=power(a.d[i]-b.d[i]);
}
return res;
}
int get_dis(node a){
int res=0;
for(int i=0;i<=1;i++){
res+=max(power(a.mx[i]-ask.d[i]),power(a.mn[i]-ask.d[i]));
}
return res;
}
void build(int &rt,int l,int r,int d){
int mid=(l+r)>>1;
now=d;
nth_element(tr+l,tr+mid,tr+r+1);
if(l<mid) build(tr[mid].l,l,mid-1,d^1);
if(r>mid) build(tr[mid].r,mid+1,r,d^1);
update(mid);
rt=mid;
}
void query(int x){
if(!x) return ;
int sum_l=inf,sum_r=inf,dist=dis(tr[x],ask);
if(tr[x].l) sum_l=get_dis(tr[tr[x].l]);
if(tr[x].r) sum_r=get_dis(tr[tr[x].r]);
if(dist>-q.top()){
q.pop();
q.push(-dist);
}
if(sum_l>sum_r){
if(sum_l>=-q.top()) query(tr[x].l);
if(sum_r>=-q.top()) query(tr[x].r);
}else{
if(sum_r>=-q.top()) query(tr[x].r);
if(sum_l>=-q.top()) query(tr[x].l);
}
}
}KD_Tree;
signed main(){
n=read(),k=read();
for(int i=1;i<=n;i++){
tr[i].d[0]=read();
tr[i].d[1]=read();
tr[i].id=i;
}
KD_Tree.build(root,1,n,0);
for(int i=1;i<=2*k;i++) q.push(inf);
for(int i=1;i<=n;i++){
ask=tr[i];
KD_Tree.query(root);
}
printf("%lld\n",-q.top());
return 0;
}

浙公网安备 33010602011771号