最大子列和问题(分治)
实例1.1 最大子列和问题 (20 分)
给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:
- 数据1:与样例等价,测试基本正确性;
- 数据2:102个随机整数;
- 数据3:103个随机整数;
- 数据4:104个随机整数;
- 数据5:105个随机整数;
输入格式:
输入第1行给出正整数K (≤);第2行给出K个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:
6
-2 11 -4 13 -5 -2
输出样例:
20
#include<iostream> #include<cstdio> #include<algorithm> #define ll long long #define maxn 1000000 using namespace std; ll sz[maxn]; int n; ll bj(ll a,ll b,ll c) { return max(max(a,b),c); } ll work(int start,int endd) { int mid=(start+endd)/2; if(start>=endd) { if(sz[start]>=0) return sz[start]; else return 0; } ll maxleft=work(start,mid); ll maxright=work(mid+1,endd); ll maxleftborde=0,leftborde=0; for(int i=mid;i>=0;i--) { leftborde+=sz[i]; if(leftborde>=maxleftborde) maxleftborde=leftborde; } ll maxrightborde=0,rightborde=0; for(int i=mid+1;i<=endd;i++) { rightborde+=sz[i]; if(rightborde>=maxrightborde) maxrightborde=rightborde; } return bj(maxleft,maxright,maxleftborde+maxrightborde); } int main() { scanf("%d",&n); for(int i=0;i<n;i++) scanf("%lld",&sz[i]); cout<<work(0,n-1)<<endl; return 0; }
别趴下,熬过黑夜就是黎明
浙公网安备 33010602011771号