Dirichlet 卷积学习笔记
定义
定义数论函数 \(f,g\),则他们的 \(Dirichlet\) 卷积为
\[(f*g)(x)=\sum_{d|x}f(d)\cdot g(\frac xd)=\sum_{d|x}f(\frac xd)\cdot g(d)
\]
性质
\[f*g=g*f\tag{1}
\]
\[f*(g+h)=f*g+f*h\tag{2}
\]
\[(f*g)*h=f*(g*h)\tag{3}
\]
证明如下:
\[\begin{aligned}(f*g)(x)&=\displaystyle\sum_{d|x}f(d)\cdot g(\frac xd)\\&=\sum_{d|x}g(\frac xd)\cdot f(d)\\&=g*f\end{aligned}
\]
\[\begin{aligned}\text{[}f*(g+h)\text{]}(x)&=\displaystyle\sum_{d|x}f(d)\cdot(g(\frac xd)+h(\frac xd))\\&=\sum_{d|x}f(d)\cdot g(\frac xd)+\sum_{d|x}f(d)\cdot h(\frac xd)\\&=f*g+f*h\end{aligned}
\]
\[\begin{aligned}\text{[}(f*g)*h\text{]}(x)&=\displaystyle\sum_{d|x}(f*g)(d)\cdot h(\frac xd)\\&=\sum_{d|x}\sum_{d'|d}f(d')\cdot g(\frac d{d'})\cdot h(\frac xd)\\&=\sum_{d_1*d_2*d_3=x}f(d_1)\cdot g(d_2)*h(d_3)\end{aligned}
\]
\[\begin{aligned}\text{[}f*(g*h)\text{]}(x)&=\displaystyle\sum_{d|x}f(\frac xd)\cdot (g*h)(d)\\&=\sum_{d|x}\sum_{d'|d}f(\frac xd)\cdot h(\frac d{d'})\cdot g(d')\\&=\sum_{d_1*d_2*d_3=x}f(d_1)\cdot g(d_2)*h(d_3)\end{aligned}
\]
\[\therefore (f*g)*h=f*(g*h)
\]
\(\varepsilon\) 函数
\[\varepsilon(x)=[x=1]=\begin{cases}1&x=1\\0&x\neq 1\end{cases}
\]
性质
任意一个数论函数 \(f\) 与 \(\varepsilon\) 的卷积为该函数本身,即 \(f*\varepsilon=f\)
证明:
\[\begin{aligned}(f*\varepsilon)(x)&=\displaystyle\sum_{d|x}f(d)\cdot \varepsilon(\frac xd)\\&=\sum_{d|x\&d\neq x}f(d)\cdot \varepsilon(\frac xd)+f(x)\cdot \varepsilon(1)\\&=f(x)\end{aligned}
\]
常见数论函数
- \(1(x)=1\),不变的函数
- \(id(x) = x\),单位函数
- \(id^k(x)=x^k\),幂函数
- \(\varepsilon(x)=[x=1]\),别称为 “对于狄利克雷卷积的乘法单位”
- \(\varphi(x)=\displaystyle\sum_{i=1}^{x}[gcd(i,x)==1]=x\prod_{i=1}^c(1-\frac1{p_i})\),欧拉函数
- \(d(x)=\displaystyle\sum_{i|x}1\),约数个数
- \(\sigma(x)=\displaystyle\sum_{i|x}i\),约数和
- 设 \(x=\displaystyle\prod_{i=1}^{c}p_i^{k_i}\),其中 \(p_i\) 为质数,莫比乌斯函数
\[\mu(x)=\begin{cases}1&x=1\\(-1)^c&\prod\limits_{i=1}^{c}k_i=1\\0&\max\limits_{i=1}^{c}k_i>1\end{cases}
\]
性质及证明
\(1.\ d=1*1\)
\[\begin{aligned}(1*1)(x)&=\displaystyle\sum_{d|x}1(d)\cdot 1(\frac xd)\\&=\sum_{d|x}1\\&=d(x)\end{aligned}
\]
\(2.\ \sigma=id*1\)
\[\begin{aligned}(id*1)(x)&=\displaystyle\sum_{d|x}id(d)\cdot 1(\frac xd)\\&=\sum_{d|x}d\\&=\sigma(x)\end{aligned}
\]
\(3.\ id=\varphi*1\)
\[\begin{aligned}(\varphi*1)(x)&=\displaystyle\sum_{d|x}\varphi(d)\cdot 1(\frac xd)\\&=\sum_{d|x}\varphi(d)\end{aligned}
\]
即证:\(x=\displaystyle\sum_{d|x}\varphi(d)\)
由于 \(\varphi\) 是一个积性函数,因此只需证明 \(x=p^k\) (\(p\) 为质数)时满足条件即可。
\[\begin{aligned}\displaystyle\sum_{d|p^k}\varphi(d)&=\sum_{i=0}^k\varphi(p^i)\\&=1+\sum_{i=1}^kp^i*(1-\frac 1p)\\&=1+\sum_{i=1}^k(p^i-p^{i-1})\\&=p^k\end{aligned}
\]
得证
\(4.\ \varepsilon=1*\mu\)
\[\begin{aligned}(1*\mu)(x)&=\displaystyle\sum_{d|x}1(\frac xd)\cdot \mu(d)\\&=\sum_{d|x}\mu(d)\end{aligned}
\]
-
当 \(x = 1\) 时,\(\displaystyle\sum_{d|x}\mu(d)=\mu(1)=1=\varepsilon(x)\)
-
当 \(x>1\) 时,令 \(x=\displaystyle\prod_{i=1}^{c}p_i^{k_i}\),则有 \(\displaystyle\sum_{d|x}=\sum_{i=0}^{k}(-1)^iC_k^i=C_k^0-C_k^1+C_k^2-\cdots+(-1)^kC_k^k\)
证明方法①
\(k\) 为奇数时,由杨辉三角对称性易知成立
\(k\) 为偶数时,原式 \(=C_{k-1}^{0}-C_{k-1}^0+C_{k-1}^1-C_{k-1}^1+\cdots+C_{k-1}^{k-1}-C_{k-1}^{k-1}=0\)
证明方法②
原式 \(=\displaystyle\sum_{i=0}^{k}C_n^ix^iy^{k-i}=(x+y)^k\)
令 \(x=1,y=-1\),原式得证.
\(5.\ 1=\mu*d\)
\[\begin{aligned}\mu*d&=\mu*1*1\\&=\varepsilon*1\\&=1\end{aligned}
\]
\(6.\ \varphi=id*\mu\)
\[\begin{aligned}id*\mu&=\varphi*\mu*1\\&=\varphi*\varepsilon\\&=\varphi\end{aligned}
\]
\(7.\ id=\sigma*\mu\)
\[\begin{aligned}\sigma*\mu&=id*1*\mu\\&=\varphi*1\\&=id\end{aligned}
\]
\(8.\ \sigma=\varphi*d\)
\[\begin{aligned}\varphi*d&=id*\mu*d\\&=id*1\\&=\sigma\end{aligned}
\]