一、图的基本概念

  1. 无向图:每条边都是无方向的;
graph TD A --- B B --- C C --- D D --- A A --- C
  1. 有向图:每条边都是有方向的;
graph LR A --> B B --> C C --> D D --> A A --> C
  1. 完全图:任意两个顶点上都存在一个边;
graph TD A --- B A --- C A --- D B --- C B --- D C --- D
  1. 子图:从图中取出的部分集合;
graph TD A --- B B --- C C --- A subgraph 子图示例 B --- D D --- E E --- B end

小结
(1)n个顶点的完全无向图有n(n - 1) / 2条边;
(2)n个顶点的完全有向图有n(n - 1)条边;
(3)若G为无向图,则图G至少有0条边,至多有n(n - 1) / 2条边;若G为有向图,则至少有0条边,至多有n(n - 1)条边。

  1. 带权图:边上带权的图;(权:具有某种含义的数值,如表示两点之间的距离)
graph TD A -- 5 --- B B -- 3 --- C C -- 7 --- D A -- 2 --- C D -- 1 --- A
  1. 连通图:无向图中任意两个顶点都存在路径可达;
graph TD A --- B B --- C C --- D D --- E F --- G G --- H H --- F B --- F
  1. 强连通图:有向图中任意两个顶点都存在路径可达;
graph LR A --> B B --> C C --> D D --> A A --> C C --> B
  1. 顶点的度:与顶点有关的边的数目;
    有向图有分为出度和入度;
    顶点V的出度 = 以V为起点有向边数;
    顶点V的入度 = 以V为终点有向边数;
    顶点V的度 = V的出度 + V的入度;
    图的度 = 图中所有顶点度的和;
graph TD A("A (d = 3)") --- B("B (d = 2)") A --- C("C (d = 3)") A --- D("D (d = 2)") B --- C C --- D
posted @ 2025-05-16 16:04  Jason227  阅读(23)  评论(0)    收藏  举报