图
一、图的基本概念
- 无向图:每条边都是无方向的;
graph TD
A --- B
B --- C
C --- D
D --- A
A --- C
- 有向图:每条边都是有方向的;
graph LR
A --> B
B --> C
C --> D
D --> A
A --> C
- 完全图:任意两个顶点上都存在一个边;
graph TD
A --- B
A --- C
A --- D
B --- C
B --- D
C --- D
- 子图:从图中取出的部分集合;
graph TD
A --- B
B --- C
C --- A
subgraph 子图示例
B --- D
D --- E
E --- B
end
小结:
(1)n个顶点的完全无向图有n(n - 1) / 2条边;
(2)n个顶点的完全有向图有n(n - 1)条边;
(3)若G为无向图,则图G至少有0条边,至多有n(n - 1) / 2条边;若G为有向图,则至少有0条边,至多有n(n - 1)条边。
- 带权图:边上带权的图;(权:具有某种含义的数值,如表示两点之间的距离)
graph TD
A -- 5 --- B
B -- 3 --- C
C -- 7 --- D
A -- 2 --- C
D -- 1 --- A
- 连通图:无向图中任意两个顶点都存在路径可达;
graph TD
A --- B
B --- C
C --- D
D --- E
F --- G
G --- H
H --- F
B --- F
- 强连通图:有向图中任意两个顶点都存在路径可达;
graph LR
A --> B
B --> C
C --> D
D --> A
A --> C
C --> B
- 顶点的度:与顶点有关的边的数目;
有向图有分为出度和入度;
顶点V的出度 = 以V为起点有向边数;
顶点V的入度 = 以V为终点有向边数;
顶点V的度 = V的出度 + V的入度;
图的度 = 图中所有顶点度的和;
graph TD
A("A (d = 3)") --- B("B (d = 2)")
A --- C("C (d = 3)")
A --- D("D (d = 2)")
B --- C
C --- D

浙公网安备 33010602011771号