POJ 2507 Crossed ladders
题目大意:

题解:

如图所示,已知\(\left\{\begin{aligned}\frac{CD}{AB}=\frac{DF}{BF}\\\frac{CD}{EF}=\frac{BD}{BF}\end{aligned}\right.\),
两式相加得\(\frac{CD}{AB}+\frac{CD}{EF} = 1\),
等式两边同时乘以\(AB\times EF\)得\(CD\times (AB + EF) = AB\times EF\),
代入题目中,设两楼之间距离为\(d\),则可得\(c \times (\sqrt{x^2 - d^2} + \sqrt{y^2 - d^2}) = \sqrt{x^2 - d^2} \times \sqrt{y^2 - d^2}\)。
对\(d\)进行二分答案,由于是浮点数所以需要设置二分的次数限制。
#include <cmath>
#include <iomanip>
#include <iostream>
using namespace std;
double x, y, c;
bool judge(double d) {
double t1 = sqrt(x * x - d * d);
double t2 = sqrt(y * y - d * d);
if (t1 * t2 >= c * (t1 + t2)) {
return true;
} else {
return false;
}
}
int main() {
while (cin >> x >> y >> c) {
double l = 0, r = min(x, y), mid;
int cnt = 99;
while (cnt--) {
mid = (l + r) / 2.0;
if (judge(mid)) {
l = mid;
} else {
r = mid;
}
}
cout << fixed << setprecision(3) << mid << endl;
}
return 0;
}

浙公网安备 33010602011771号