0. 准备
setwd("D:/R/CHOL")
rm(list = ls())
load(file = "step4output.Rdata")
library(clusterProfiler)
library(dplyr)
library(ggplot2)
构建kegg_plot函数(以up_kegg和down_kegg为输入数据做图):
kegg_plot <- function(up_kegg,down_kegg){
dat=rbind(up_kegg,down_kegg)
colnames(dat)
dat$pvalue = -log10(dat$pvalue)
dat$pvalue = dat$pvalue*dat$group
dat = dat[order(dat$pvalue,decreasing = F),]
g_kegg <- ggplot(dat, aes(x = reorder(Description,order(pvalue, decreasing = F)), y = pvalue, fill = group)) +
geom_bar(stat = "identity") +
scale_fill_gradient(low = "blue",high = "red",guide = "none") +
scale_x_discrete(name = "Pathway names") +
scale_y_continuous(name = "-log10Pvalue") +
coord_flip() +
theme_bw()+
theme(plot.title = element_text(hjust = 0.5))+
ggtitle("Pathway Enrichment")
}
1. GO富集分析(GO database analysis)
输入数据
gene_up = deg[deg$change == 'up','ENTREZID'] gene_down = deg[deg$change == 'down','ENTREZID'] gene_diff = c(gene_up,gene_down) gene_all = deg[,'ENTREZID']
1. 上调基因的ENTREZID。gene_up = deg$ENTREZID[deg$change == 'up']可实现相同功能。
2. 下调基因的ENTREZID
3. 所有差异基因的ENTREZID
4. 所有基因的ENTREZID
GO分析
细胞组分(Cellular Component,CC)、生物过程(Biological Process,BP)、分子功能(Molecular Function,MF):
ego_CC <- enrichGO(gene = gene_diff,
OrgDb= org.Hs.eg.db,
ont = "CC",
pAdjustMethod = "BH",
minGSSize = 1,
pvalueCutoff = 0.01,
qvalueCutoff = 0.01,
readable = TRUE)
ego_BP <- enrichGO(gene = gene_diff,
OrgDb= org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
minGSSize = 1,
pvalueCutoff = 0.01,
qvalueCutoff = 0.01,
readable = TRUE)
ego_MF <- enrichGO(gene = gene_diff,
OrgDb= org.Hs.eg.db,
ont = "MF",
pAdjustMethod = "BH",
minGSSize = 1,
pvalueCutoff = 0.01,
qvalueCutoff = 0.01,
readable = TRUE)
可视化
条带图:
barplot(ego_CC,showCategory = 20)
默认显示8个类别,一般设置为20,可修改
气泡图:
dotplot(ego_CC)
其他图
下面的图需要映射颜色
geneList = deg$logFC names(geneList) = deg$ENTREZID geneList = sort(geneList,decreasing = T)
1. 设置geneList向量的值为logFC
2. 修改其中元素的名字为ENTREZID,
3. 按logFC从大到小排序
1. cnetplot(Gene-Concept Network,通路-基因网络图):展示top5通路下的基因网络
cnetplot(ego_CC, categorySize = "pvalue", foldChange = geneList,showCategory = 5,colorEdge = TRUE,color_category = "steelblue") cnetplot(ego_CC, foldChange=geneList, circular = TRUE, colorEdge = TRUE)
1. 散布状分布
2. 圈状分布
2. emapplot(Enrichment Map):展示有共同基因的通路
library(enrichplot) emapplot(pairwise_termsim(ego_CC))
emapplot富集图将被富集的术语组织成一个边缘连接重叠基因集的网络,相互重叠的基因集往往会聚集在一起,因此有助于我们识别功能模块。
3. goplot(GO通路网络图):展示通路关系
goplot(ego_CC)
4. heatplot(Heatmap-like functional classification,热图)
heatplot(ego_CC,foldChange = geneList,showCategory = 5)
与cnetplot展示内容类似,但是将不同富集通路的相同基因聚在了一起,有助于我们更好识别基因模块
2. KEGG富集分析(KEGG pathway analysis)
输入数据
gene_up = deg[deg$change == 'up','ENTREZID'] gene_down = deg[deg$change == 'down','ENTREZID'] gene_diff = c(gene_up,gene_down) gene_all = deg[,'ENTREZID']
对上调/下调/所有差异基因进行富集分析
kk.up <- enrichKEGG(gene = gene_up,
organism = 'hsa',
universe = gene_all,
pvalueCutoff = 0.9,
qvalueCutoff = 0.9)
kk.down <- enrichKEGG(gene = gene_down,
organism = 'hsa',
universe = gene_all,
pvalueCutoff = 0.9,
qvalueCutoff =0.9)
kk.diff <- enrichKEGG(gene = gene_diff,
organism = 'hsa',
pvalueCutoff = 0.9)
从富集结果中提取出结果数据框
kegg_diff_dt <- kk.diff@result
按照pvalue筛选通路
在enrichKEGG时没有设置pvalueCutoff,在此处筛选:
down_kegg <- kk.down@result %>% filter(pvalue < 0.05) %>% mutate(group = -1) up_kegg <- kk.up@result %>% filter(pvalue < 0.05) %>% mutate(group = 1)
3. 将p<0.05的下调基因标记为-1
6. 将p>0.05的下调基因标记为1
可视化
g_kegg <- kegg_plot(up_kegg,down_kegg) g_kegg + scale_y_continuous(labels = c(20,15,10,5,0,5))
2. 图中的横坐标有误,需手动修改横坐标(>0),修改时结合图中对应的横坐标
保存图片
ggsave(g_kegg,filename = 'kegg_up_down.png')
3. GSEA作KEGG富集分析(了解)
查看示例数据
data(geneList, package="DOSE")
将数据转换成示例数据的格式
geneList=deg$logFC names(geneList) = deg$ENTREZID geneList = sort(geneList,decreasing = T)
富集分析
kk_gse <- gseKEGG(geneList = geneList,
organism = 'hsa',
nPerm = 1000,
minGSSize = 120,
pvalueCutoff = 0.9,
verbose = FALSE)
down_kegg <- kk_gse[kk_gse$pvalue < 0.05 & kk_gse$enrichmentScore < 0,];down_kegg$group = -1
up_kegg <- kk_gse[kk_gse$pvalue < 0.05 & kk_gse$enrichmentScore > 0,];up_kegg$group = 1
可视化
kegg_plot <- kegg_plot(up_kegg,down_kegg)
保存图片
ggsave('kegg_up_down_gsea.png')

浙公网安备 33010602011771号