【Course】Machine learning:Week 1-Lecture1&Lecture2
一、Introduction
- 略
二、Linear Regression with One Variable
-
0 Model
本节课的问题是房价预测问题:


-
hypothesis \(h_{\theta}(x)\):是x的函数(对于一个固定的\(\theta_1\))
-
cost function \(J(\theta_1)\):是参数\(\theta_1\)的函数
-
2 Gradient Descent
-
(1)针对这个单变量线性回归问题,如下图,有个要点:

-
(2)梯度下降算法公式:
\[\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)
\]
无论\(\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)\)的符号是什么,\(\theta_1\)都会收敛到使得cost function取得最小值的点,符号是正时,\(\theta_1\)减小,符号是负时,\(\theta_1\)增大。

-
(3)$\alpha的值要合理

- 此外

\[\begin{aligned}
\frac{\partial}{\partial \theta_{j}} J(\theta) &=\frac{\partial}{\partial \theta_{j}} \frac{1}{2}\left(h_{\theta}(x)-y\right)^{2} \\
&=2 \cdot \frac{1}{2}\left(h_{\theta}(x)-y\right) \cdot \frac{\partial}{\partial \theta_{j}}\left(h_{\theta}(x)-y\right) \\
&=\left(h_{\theta}(x)-y\right) \cdot \frac{\partial}{\partial \theta_{j}}\left(\sum_{i=0}^{n} \theta_{i} x_{i}-y\right) \\
&=\left(h_{\theta}(x)-y\right) x_{j}
\end{aligned}
\]
-
(5)一个梯度下降的例子
梯度下降的轨迹,初始值为(48,30)

posted on 2020-02-29 16:37 zhangqinghu 阅读(205) 评论(0) 收藏 举报
浙公网安备 33010602011771号