随笔分类 -  人脸光照调整

介绍一些主流并行之有效的人脸光照处理方法
摘要:人脸光照处理的理想状态是,在不损失图像内容的前提下,保持图像在各种环境下的图像光照一致。而像之前提到过的Gabor虽然能保持较好的光照统一性,但会造成一部分的低频信息丢失,另外的DCT变换,不能很好适应环境光的变化。所以,在实际使用中,往往不能把光照处理的压力都放在后期算法处理上,在摄像头采集时就需要对环境光做一定的过滤。比如近红外图像,采集时去除大多可见光对图像内容的影响,在此基础上再进行软件处理,往往能达到生产上的要求。 1 传统Gamma校正及改进 传统Gamma校正算法具有较好的光照调整效果,但是由于其容易造成校正过度的原因,因而使用范围受到限制。正如图1和2所示,Gamma函... 阅读全文
posted @ 2012-04-16 21:53 Image Vision 阅读(5715) 评论(3) 推荐(6)
摘要:在图像处理、模式识别以及计算机视觉等领域中,Gabor 滤波器得到了广泛的应用。 用Gabor 函数形成的二维Gabor 滤波器具有在空间域和频率域同时取得最优局部化的特性,与人类生物视觉特性很相似,因此能够很好地描述对应于空间频率(尺度)、空间位置及方向选择性的局部结构信息。 Gabor变换是一种短时傅里叶变换方法,其实质是在傅里叶变换中加入一个窗函数,通过窗函数来实现信号的时频分析。当选取高斯函数作为窗函数时,短时傅里叶变换称为Gabor变换。 常用的偶对称二维Gabor滤波器可表示为:不同方向下的Gabor滤波器: 图1不同方向上的滤波器 ... 阅读全文
posted @ 2012-04-09 19:48 Image Vision 阅读(6405) 评论(3) 推荐(2)
摘要:人脸光照调整一直是人脸识别问题中的难点,作者就不同处理方法,并结合其在实际应用中的表现,在此分章节谈一些个人看法,有不当之处,还望各园友指正。光照调整主要分在频率域和空间域的处理,频率域中有DCT变换、小波变换等。而在空间域有直方图均衡化、Gamma校正等。作者在此只介绍一些主流并有较广适应范围的方法。首先,我们来谈谈DCT变换吧:DCT(离散余弦变换)对高相关性的数据(信号),具有非常好的能量聚焦性,经过变换,信号能量的绝大部分被集中到变换域的少数系数上。因此,对于受光照影响的图像,我们只需要修改很少的频域系数,就可以对图像的光照做出较好调整,避免了需要调节多个参数以适合不同图像的问题,操作 阅读全文
posted @ 2012-03-30 20:37 Image Vision 阅读(2533) 评论(4) 推荐(3)